
Dynamic Load balancing for I/O- and Memory-
Intensive workload in Clusters using a Feedback

Control Mechanism

Xiao Qin, Hong Jiang, Yifeng Zhu, David R. Swanson

Department of Computer Science and Engineering
University of Nebraska - Lincoln, Lincoln, NE, USA.
Email: {xqin, jiang, yzhu, dswanson}@cse.unl.edu

Abstract. 1 One common assumption of the existing models of load bal-
ancing is that the weights of resources and I/O buffer size are statically
configured. Though the static configuration of these parameters performs
well in a cluster where the workload can be predicted, its performance is
poor in dynamic systems where the workload is unknown. In this paper,
a new feedback control mechanism is proposed to improve the overall
performance of a cluster with I/O-intensive and memory-intensive work-
load. The mechanism dynamically adjusts the resource weights as well
as the I/O buffer size. Results from a trace-driven simulation show that
this mechanism is effective in enhancing the performance of a number of
existing load-balancing schemes.

1 Introduction

Dynamic load balancing schemes in a cluster can improve system performance by
attempting to assign work, at run time, to machines with idle or under-utilized
resources. Several distributed load-balancing schemes have been presented in
the literature, primarily considering CPU [1], memory [2], or a combination of
CPU and memory [3]. Although these load-balancing policies have been very
effective in increasing the utilization of resources in distributed systems, they
have ignored one type of resource, namely disk I/O. The impact of disk I/O on
overall system performance is becoming significant as more and more jobs with
high I/O demand are running on clusters. Therefore, we have developed two load
balancing algorithms to improve the read and write performance of a parallel
file system [4][5].

Very recently, surdeanu et. al [6] developed a load balancing model that con-
siders I/O, CPU, and memory resources simultaneously. In this model, three re-
source weights were introduced to reflect the significance of resources in a cluster
and, as an assumption, the weights of system resources are statically configured.

1 This paper appears in the proceedings of the 9th International Euro-Par Conference
on Parallel Processing (Euro-Par 2003), Klagenfurt, Austria, Aug.26-29, 2003.

To release this assumption that does not hold for clusters with dynamic work-
loads, this paper proposes a feedback control mechanism to judiciously configure
the resource weights in accordance with the dynamic workloads. Moreover, the
new mechanism is able to improve the buffer utilization of each node in the
cluster when its workload is I/O- and/or memory-intensive.

2 Adaptive Load Balancing Scheme

2.1 Weighted Average Load-balancing Scheme

We consider the issue of a feedback control method in a cluster, M = {M1, ..., Mn},
connected by a high-speed network. Since jobs may be delayed because of shar-
ing resources with other jobs or being migrated to remote nodes, the slowdown
imposed on a job j is defined as:

slowdown(j) =
timeWALL(j)

timeCPU (j) + timeIO(j)
(1)

where timeWALL(j) is the total time the job spends running, accessing I/O,
waiting, or migrating, and timeCPU(j) and timeIO(j) are the times spent by j

on CPU and I/O, respectively, without any resource sharing.

For a newly arrived job j at a node i, load balancing schemes attempt to ship
it to a remote node with the lightest load if node i is heavily loaded, otherwise
job j is admitted into node i and executed locally. We propose a weighted aver-
age load-balancing scheme, or WAL-FC, where a feedback control mechanism is
incorporated. Each job is described by its requirements for CPU, memory, and
I/O, which are measured by Seconds, Mbytes, and number of I/O accesses per
ms, respectively. For a newly arrived job j at a node i, WAL-FC balances the
system load in five steps. First, the load of node i is updated by adding job j’s
load. Second, a migration is initiated if node i is overloaded. Third, a candidate
node k with the lowest load is chosen. To avoid useless migrations, the load dis-
crepancy between node i and k has to be greater than the load induced by job
j. If a candidate node is not available, no migration will be carried out. Fourth,
WAL-FC determines if job j’s migration is able to potentially reduce the job’s
slowdown. Finally, job j is migrated to the remote node k, and the loads of nodes
i and k are updated.

WAL-FC calculates the weighted average load index of each node i, which is
defined as the weighted average of CPU and I/O load, thus:

loadWAL = WCPU × loadCPU (i) + WIO × loadIO(i), (2)

where loadCPU (i) is CPU load defined as the number of running jobs and
loadIO(i) is the I/O load defined as the summation of the individual implicit
and explicit I/O load contributed by jobs assigned to node i. It is noted that the
memory load is expressed by the implicit I/O load imposed by page faults. Let

lpage(i, j) and lIO(i) denote the implicit and explicit I/O load of job j assigned
to node i, respectively, then, loadIO(i) can be defined as:

loadIO(i) =
∑

j∈Mi

lpage(i, j) +
∑

j∈Mi

lIO(i). (3)

When the node’s available memory space is larger than or equal to the mem-
ory demand, there is no implicit I/O load imposed on the disk. Conversely, when
the memory space of a node is unable to meet the memory requirements, page
faults may lead to a high implicit I/O load.

2.2 A Feedback Control Mechanism

To retain high performance, a feedback control mechanism is employed to auto-
matically adjust the weights of resources. The high level view of the architecture
for the mechanism is presented in Fig.1, where the architecture comprises a
load-balancing scheme, a resources-sharing controller, and a feedback controller.
The slowdown of a newly completed job and the history slowdowns are fed back
to the feedback controller, which then determines the required control action
∆WIO . (∆WIO > 0 means the IO-weight needs to be increased, and otherwise
the IO-weight should be decreased.) Since the sum of WCPU and WIO is 1, the
control action ∆WCPU can be obtained accordingly.

Newly
arrived jobs

Running
jobs

CPU MEM I/O

Completed job j

Resource
Sharing
controller

Load-
balancing

Feedback
Controller

 Slowdown history
slowdown(j)

 WIO, WCPU

Fig. 1. Architecture of the feedback control mechanism

The feedback controller attempts to manipulate WCPU and WIO in the fol-
lowing three steps. First, the controller calculates the slowdown sj of the newly
completed job j. Second, sj is stored in the history table, which reflects a spe-
cific pattern of the recent slowdowns. The average value of the slowdowns(savg)
in the history table is computed. Finally, the performance is considered being
improved if savg > sj , therefore WIO is increased if it has been increased by
the previous control action, otherwise WIO is decreased. Similarly, savg < sj

means that the performance has been worsened, suggesting that WIO has to be
increased if the previous control action has reduced WIO, and vice versa.

Besides configuring the weights, the feedback control mechanism is utilized
to dynamically manipulate the buffer size of each node. The main goals are:
(1) improve the buffer utilization and the buffer hit rate; and (2) reduce the
number of page faults. In Fig.1, the feedback control generates action ∆bufSize

in addition to ∆WCPU and ∆WIO . Specifically, savg > sj means the performance
is improved by the previous control action, thereby increasing the buffer size if
it has been increased by the previous control action, otherwise the buffer size is
reduced. Likewise, savg < sj indicates that the latest buffer control action leads
to a worse performance, implying that the buffer size has to be increased if the
previous control action has reduced the buffer size, and vice versa.

3 Experiments and Results

To evaluate the performance of the proposed scheme, We have evaluated the
performance of the following load-balancing policies:

(1) CM: the CPU-memory-based policy [3] without using buffer feedback
controller(BFC).

(2) IO: the IO-based policy without using the BFC algorithm. The IO policy
uses a load index that represents only the I/O load.

(3) WAL: the Weighted Average Load-balancing scheme without BFC [6].
(4) CM-FC: the CPU-memory-based policy in which BFC is incorporated.
(5) IO-FC: the IO-based load-balancing policy to which BFC is applied.
(6) WAL-FC: the Weighted Average Load-balancing scheme with BFC.
In addition, the above schemes are compared with the performance of the

following two policies: the non-load-balancing policy without BFC(NLB) and
the non-load-balancing policy that employs BFC(NLB-FC).

3.1 Simulation Model

To study dynamic load balancing, Harchol-Balter and Downey [1] implemented
a simulator for a distributed system with six nodes. Zhang et. al [3] extended
this simulator by incorporating memory recourses. We have modified these sim-
ulators, implementing a simple disk model and an I/O buffer model. The traces
used in the simulation are modified from [1][3], and it is assumed that the I/O
access rate is randomly chosen in accordance with a uniform distribution. The
simulated system is configured with parameters listed in Fig.2.

Disk accesses of each job are modeled as a Poisson process. Data sizes of the
I/O requests in each job are randomly generated based on a Gamma distribution
with the mean size of 250KByte and the standard deviation of 50KByte. Since
buffer can be used to reduce the disk I/O access frequency, we approximately
model the buffer hit probability for job j running on node i as follows:

hit rate(i, j) =

{ rj

rj+1 if dbuf (i, j) ≥ ddata(j),
rj

rj+1 ×
dbuf (i,j)
ddata(j) otherwise,

(4)

Parameters Value Parameters Value

CPU Speed 800 MIPS Page Fault Service Time 8.1 ms
RAM Size 640 MByte Seek and Rotation time 8.0 ms
Initial Buffer Size 160MByte Disk Transfer Rate 40MB/Sec.
Context switch time 0.1 ms Network Bandwidth 1Gbps

Fig. 2. Data Characteristics

where rj is the data re-access rate, dbuf (i, j) is the buffer size allocated to job
j, and ddata(j) is the amount of data job j retrieves from or stores to the disk,
given a buffer with infinite size. Buffer is a resource shared by multiple jobs in
the node, and the buffer size a job can obtain in node i at run time depends on
the jobs’ I/O access rate and mean data size of I/O accesses.

Figure 3 shows the effects of buffer size on the buffer hit probabilities of the
NLB, CM and IO policies. When buffer size is smaller than 150MByte, the buffer
hit probability increases almost linearly with the buffer size. The increasing rate
of the buffer hit probability drops when the buffer size is greater than 150Mbyte,
suggesting that further increasing the buffer size can not significantly improve
the buffer hit probability when the buffer size approaches to a level at which a
large portion of the I/O data can be accommodated in the buffer.

0

10

20

30

40

50

60

70

80

10 50 100 150 200 250 300 350 400 450

NL, R=5
CM, R=5
IO, R=5
NL, R=3
CM, R=3
IO, R=3

Buffer Size (Mbyte)

Buffer Hit Probability

Fig. 3. Buffer Hit Probability. Page-fault
rate is 4.0No./ms, I/O access rate is
2.2No./ms, R is data re-access rate.

0
10
20
30
40
50
60
70
80
90

100

7.2 7.4 7.6 7.8 8 8.2 8.4

NLB
NLB-FC
CM
CM-FC
IO
IO-FC
WAL
WAL-FC

Number of Page Fault Per Millisecond

Mean Slowdown

Fig. 4. Mean slowdowns as a function of
the page-fault rate. I/O access rate of
1.5No./ms

3.2 Memory and I/O intensive Workload

This section attempts to show an interesting case where the workload is both
memory and I/O intensive. The I/O access rate is set to 1.5No./ms, and the
page fault rate is from 7.2No./ms to 8.4No./ms.

Not surprisingly, Figure 4 shows that load-balancing schemes achieve sig-
nificant improvements. Moreover, the performances of CM, IO, and WAL are
close to one another, whereas the performance of CM-FC is similar to those of
IO-FC and WAL-FC. This is because the trace comprises memory-intensive and
I/O-intensive jobs. Hence, while CM and CM-FC take advantage of balancing
CPU-memory load, IO and IO-FC can enjoy benefits of balancing I/O load.

A second observation is that, under the memory and I/O intensive workload,
CM-based policies achieve higher level of improvements over NLB than IO-based
schemes. The reason is that when memory and I/O demands are high, the buffer
sizes in a cluster are unlikely to be changed, as there is a memory contention
among memory-intensive and I/O-intensive jobs. Thus, the buffer sizes finally
converge to a value that minimizes the mean slowdown.

Third, the result shows that the feedback control mechanism can further
improve the performance of the load-balancing schemes. For example, WAL-FC
further decreases the slowdown of WAL by up to 27.3%, and IO-FC further
decreases the slowdown of IO by up to 24.7%. This result suggests that, to
sustain a high performance in clusters, compounding a feedback controller with
an appropriate load-balancing policy is desirable and strongly recommend.

4 Conclusion

In this paper, we have proposed a feedback control mechanism to dynamically
adjust the weights of resources and the buffer sizes in a cluster. The proposed
algorithm minimizes the number of page faults for memory-intensive jobs while
improving the buffer utilization of I/O-intensive jobs. A trace-driven simulation
demonstrates that our approach is effective in enhancing performance of existing
dynamic load-balancing algorithms. Future study in this area is two-fold. First,
we plan to study the stability of the proposed feedback controller. Second, we
will study how quickly the controller converges to the optimal value.

5 Acknowledgments

This work was partially supported by an NSF grant (EPS-0091900), a Nebraska
University Foundation grant (26-0511-0019), and a UNL Academic Program
Priorities Grant. Work was completed using the Research Computing Facility at
University of Nebraska-Lincoln.

This work was partially supported by an NSF grant (EPS-0091900), a Ne-
braska University Foundation grant (26-0511-0019), and a UNL Academic Pro-
gram Priorities Grant. Work was completed using the Research Computing Fa-
cility at University of Nebraska-Lincoln.

References

1. Harchol-Balter, M., Downey, A.: Exploiting process lifetime distributions for load
balancing. ACM Transactions on Computer Systems 15 (1997) 253–285

2. Acharva, A., Setia, S.: Availability and utility of idle memory in workstation clusters.
In: Proceedings of the ACM SIGMETRICS Conf. on Measuring and Modeling of
Computer Systems. (1999)

3. Zhang, X., Qu, Y., Xiao, L.: Improving distributed workload performance by shar-
ing both cpu and memory resources. In: Proceedings of the 20th Int’l Conf. on
Distributed Computing Systems. (2000)

4. Zhu, Y., Jiang, H., Qin, X., Feng, D., Swanson, D.: Improved read performance in
a cost-effective, fault-tolerant parallel virtual file system (ceft-pvfs). In: Proc. of the
3rd IEEE/ACM Intl. Symp. on Cluster Computing and the Grid. (2003) 730–735

5. Zhu, Y., Jiang, H., Qin, X., Feng, D., Swanson, D.: Scheduling for improved write
performance in a cost-effective, fault-tolerant parallel virtual file system (ceft-pvfs).
In: the Fourth LCI International Conference on Linux Clusters. (2003)

6. Surdeanu, M., Modovan, D., Harabagiu, S.: Performance analysis of a distributed
question/answering system. IEEE Trans. on Parallel and Distributed Systems 13

(2002) 579–596

