
Dynamic Load Balancing for I/O-Intensive Tasks
on Heterogeneous Clusters

Xiao Qin, Hong Jiang, Yifeng Zhu, David R. Swanson

Department of Computer Science and Engineering
University of Nebraska - Lincoln, Lincoln, NE, USA.
Email: {xqin, jiang, yzhu, dswanson}@cse.unl.edu

Abstract. 1 Since I/O-intensive tasks running on a heterogeneous clus-
ter need a highly effective usage of global I/O resources, previous CPU-
or memory-centric load balancing schemes suffer significant performance
drop under I/O-intensive workload due to the imbalance of I/O load. To
solve this problem, we develop two I/O-aware load-balancing schemes,
which consider system heterogeneity and migrate more I/O-intensive
tasks from a node with high I/O utilization to those with low I/O uti-
lization. If the workload is memory-intensive in nature, the new method
applies a memory-based load balancing policy to assign the tasks. Like-
wise, when the workload becomes CPU-intensive, our scheme leverages
a CPU-based policy as an efficient means to balance the system load. In
doing so, the proposed approach maintains the same level of performance
as the existing schemes when I/O load is low or well balanced. Results
from a trace-driven simulation study show that, when a workload is I/O-
intensive, the proposed schemes improve the performance with respect
to mean slowdown over the existing schemes by up to a factor of 8. In
addition, the slowdowns of almost all the policies increase consistently
with the system heterogeneity.

1 Introduction

Dynamic load balancing schemes are widely recognized as important techniques
for the efficient utilization of resources in networks of workstations or clusters.
Many load balancing polices achieve high system performance by increasing the
utilization of CPU [1], memory [2], or a combination of CPU and memory [3].
However, these load-balancing policies are less effective when the workload com-
prises a large number of I/O-intensive tasks and I/O resources exhibit imbal-
anced load.

We have proposed two I/O-aware load-balancing schemes to improve overall
performance of a distributed system with a general and practical workload in-
cluding I/O activities [4][5]. However, it is assumed in [4][5] that the system is
homogeneous in nature. There is a strong likelihood that upgraded clusters or

1 This paper appears in the proceedings of the 2003 International Conference on High
Performance Computing (HiPC03).

networked clusters are heterogeneous, and heterogeneity in disks tends to induce
more significant performance degradation when coupled with imbalanced load of
memory and I/O resources. Therefore, it becomes imperative that heterogeneous
clusters be capable of hiding the heterogeneity of resources, especially that of
I/O resources, by judiciously balancing I/O work across all the nodes in a clus-
ter. This paper studies two dynamic load balancing policies, which are shown to
be effective for improving the utilization of disk I/O resources in heterogeneous
clusters.

There is a large body of literature concerning load balancing in disk systems.
Scheuermann et al. [6] have studied the issues of striping and load balancing
in parallel disk systems. To minimize total I/O time in heterogeneous cluster
environments, Cho et al. [7] have developed heuristics to choose the number of
I/O servers and place them on physical processors. In [8][9], we have studied
dynamic scheduling algorithms to improve the read and write performance of a
parallel file system by balancing the global workload. The above techniques can
improve system performance by fully utilizing the available hard drives. However,
these approaches become less effective under a complex workload where I/O-
intensive tasks share resources with many memory- and CPU-intensive tasks.

Many researchers have shown that I/O cache and buffer are useful mech-
anisms to optimize storage systems. Ma et al. [10] have implemented active
buffering to alleviate the I/O burden by using local idle memory and overlap-
ping I/O with computation. We have developed a feedback control mechanism
to improve the performance of a cluster by manipulating the I/O buffer size [11].
Forney et al. [12] have investigated storage-aware caching algorithms in hetero-
geneous clusters. Although we focus solely on balancing disk I/O load in this
paper, the approach proposed here is capable of improving the buffer utiliza-
tion of each node. The scheme presented in this paper is complementary to the
existing caching/buffering techniques, thereby providing additional performance
improvement when combined with active buffering, storage-aware caching, and
a feedback control mechanism.

The rest of the paper is organized as follows. Section 2 describes the system
model. Section 3, we propose two I/O-aware load-balancing policies. Section 4
evaluates the performance. Section 5 concludes the paper.

2 Workload and System Model

In this paper, we consider a cluster as a collection of heterogeneous nodes con-
nected by a high-speed network. Tasks arrive at each node dynamically and
independently, and share resources available there. Each node maintains its in-
dividual task queue where newly arrived tasks may be transmitted to other
nodes or executed in the local node, depending on a load balancing policy em-
ployed in the system. Each node keeps track of reasonably up-to-date global load
information by periodically exchanging load status with other nodes.

We address heterogeneity with respect to a diverse set of disks, CPUs, and
memories. We characterize each node i by its CPU speed Ci, memory capacity

Mi, and disk performance Di. Let Bdisk
i , Si, and Ri denote the disk bandwidth,

average seek time, and average rotation time of the disk in node i, then the
disk performance can be approximately measured as the following equation:
Di = 1

Si+Ri+d/Bdisk
i

where d is the average size of data stored or retrieved by

I/O requests.
The weight of a disk performance W disk

i is defined as a ratio between its
performance and that of the fastest disk in the cluster. Thus, we have W disk

i =
Di

maxn
j=1

(Dj)
. The disk heterogeneity level, referred to as HD, can be quantitatively

measured by the standard deviation of disk weights. Thus, HD is expressed as:

HD =

√

∑n
i=1 (W disk

avg − W disk
i)2

n
(1)

where W disk
avg is the average disk weight. Likewise, the CPU and memory hetero-

geneity levels are defined as follows:

HC =

√

∑n
i=1 (W CPU

avg − W CPU
i)2

n
, HM =

√

∑n
i=1 (W mem

avg − W mem
i)2

n
(2)

where W CPU
i and W mem

i are the CPU and memory weights, and W CPU
avg and

W mem
avg are the average weights of CPU and memory resources [3].
We also assume that the network provides full connectivity in the sense that

any two nodes are connected through either a physical link or a virtual link. We
assume that arriving tasks are either sequential or otherwise parallel applications
can be broken into a number of tasks with individual and independent resource
requirements.

Each task is assumed to read or write data locally, and this amount of data,
referred to as initial data, is required to be shipped along with a migrated task.
This assumption is conservative in the sense that it makes our approach less
effective, because the migration overhead imposed by the initial data can be
potentially avoided by replicating it across all the nodes. The memory burden
of migrating data is not considered in our model, because data movement can
be handled by storage and network interface controllers without local CPU’s
intervention and I/O buffer [13].

For simplicity, we assume that all I/O operations issued by tasks are block-
ing. This simplification is conservative in the sense that it underestimates the
performance benefits from the proposed scheme because this assumption causes
a number of undesired migrations with negative impact.

3 Load Balancing in Heterogeneous Clusters

3.1 Existing Load Balancing Policies

In principle, the load of a node can be balanced by migrating either a newly
arrived job or a currently running job preemptively to another node if needed.

While the first approach is referred to as Remote Execution, the second one is
called preemptive migration [1][5]. Since the focuses of this study are effective
usage of I/O resources and coping with system heterogeneity, we only consider
the technique of remote execution in this paper. In what follows, we briefly
review two existing load-balancing policies.

(1) CPU-based Load Balancing (CPU-RE) [3][14]. We consider a simple
and effective policy, which is based on a heuristic. The CPU load of node i,
loadCPU (i), is measured by the following expression [3]: loadCPU (i) = Li ×

(
maxn

j=1
Cj

Ci
) where Li is the number of tasks on node i.

If loadCPU (i) is greater than a certain threshold, node i is consider over-
loaded with respect to CPU resource. The CPU-based policy transfers the newly
arrived tasks on the overloaded node i to the remote node with the lightest CPU
load. This policy is capable of resulting in a balanced CPU load distribution for
systems with uneven CPU load distribution [14]. Note that the CPU threshold
is a key parameter that depends on both workload and transfer cost. In the
experiments reported in Section 4, the value of CPU threshold is set to four [3].

(2) CPU-memory-based Load Balancing (CM-RE) [3]. This policy takes
both CPU and memory resources into account. The memory load of node i,
loadmem(i), is the sum of the memory space allocated to the tasks running on
node i. Thus, we have loadmem(i) =

∑

j∈Ni
mem(j) where mem(j) represents

the memory requirement of task j, and Ni denotes the set of tasks running on
node i. If the memory space of a node is greater than or equal to loadmem(i), CM-
RE adopts the above CPU-RE policy to make load-balancing decisions. When
loadmem(i) exceeds the amount of available memory space, the CM-RE policy
transfers the newly arrived tasks on the overloaded node to the remote nodes
with the lightest memory load. Zhang et al. [3] showed that CM-RE is superiors
to CPU-RE under a memory-intensive workload.

3.2 IO-aware Load Balancing in Heterogeneous Clusters

We now turn our attention to an I/O-aware load balancing policy (IO-RE),
which is heuristic and greedy in nature. Instead of using CPU and memory load
indices, the IO-RE policy relies on an I/O load index to measure two types of
I/O access: the implicit I/O load induced by page faults and the explicit I/O
requests resulting from tasks accessing disks. Let page(i, j) be the implicit I/O
load of task j on node i, and IO(j) be the explicit I/O requirement of task j.
Thus, node i’s I/O load index is:

loadIO(i) =
∑

j∈Ni

page(i, j) +
∑

j∈Ni

IO(j) (3)

An I/O threshold, thresholdIO(i), is introduced to identify whether node
i’s I/O resource is overloaded. Node i’s I/O resource is considered overloaded
if loadIO(i) is higher than thresholdIO(i). Specifically, thresholdIO(i), which

reflects the I/O processing capability of node i, is expressed as:

thresholdIO(i) =
Di

∑n
j=1 Dj

×

n
∑

j=1

loadIO(j) (4)

where the first term on the right hand side of the above equation corresponds to
the fraction of the total I/O processing power on node i, and the second term
gives the accumulative I/O load imposed by the running tasks in the heteroge-
neous cluster. The I/O threshold associated with node i can be calculated using
equations 3 to substitute for loadIO(j) in equation 4.

For a task j arriving at a local node i, the IO-RE scheme attempts to balance
I/O resources in the following four main steps. First, the I/O load of node i is
updated by adding task j’s explicit and implicit I/O load. Second, the I/O
threshold of node i is computed based on Equation 4. Third, if node i’s I/O
resource is underloaded, task j will be executed locally on node i. When the node
is overloaded with respect to I/O resource, IO-RE judiciously chooses a remote
node k as task j’s destination node, subject to the following two conditions:
(1) The I/O resource is not overloaded. (2) The I/O load discrepancy between
node i and k is greater than the I/O load induced by task j, to avoid useless
migrations. If such a remote node is not available, task j has to be executed
locally on node i. Otherwise and finally, task j is transferred to the remote node
k, and the I/O load of nodes i and k is updated in accordance with j’s load.

Since tasks’ implicit and explicit I/O load will be used in Equation 4 and
the above conditions, it is essential to derive the two types of I/O load. When
the available memory space Mi is unable to fulfill the accumulative memory
requirements of all tasks running on the node (loadmem(i) > Mi), the node may
encounter a large number of page faults. Implicit I/O load depends on three
factors: Mi, loadmem(i), and the page fault rate pri. Thus, page(i, j) can be
defined as follows:

page(i, j) =

{

0 if loadmem(i) ≤ Mi,
pri×loadmem(i)

Mi
otherwise.

(5)

Explicit I/O load IO(i, j) is proportional to I/O access rate ar(j) and in-
versely proportional to I/O buffer hit rate hr(i, j). The buffer hit rate for task
j on node i is approximated by the following formula:

hr(i, j) =

{

r
r+1 if buf(i, j) ≥ d(j),

r×buf(i,j)
(r+1)×d(j) otherwise,

(6)

where r is the data re-access rate (defined to be the number of times the same
data is accessed by a task), buf(i, j) denotes the buffer size allocated to task
j, and d(j) is the amount of data accessed by task j, given a buffer with in-
finite size. The buffer size a task can obtain at run time heavily depends on
the total available buffer size in the node and the tasks’ access patterns. d(j) is
linearly proportional to access rate, computation time and average data size of

I/O accesses, and d(j) is inversely proportional to r. In some cases, where the
initial data of a task j is not initially available at the remote node, the data
migration overhead can be approximately estimated as Td(j) = dinit(j)/bnet,
where dinit(j) and bnet represent the initial data size and the available network
bandwidth, respectively.

3.3 IOCM-RE: A Comprehensive Load Balancing Policy

Since the main target of the IO-RE policy is exclusively I/O-intensive workload,
IO-RE is unable to maintain a high performance when the workload tends to
be CPU- or memory-intensive. To overcome this limitation of IO-RE, a new
approach, referred to as IOCM-RE, attempts to achieve the effective usage of
CPU and memory in addition to I/O resources in heterogeneous clusters.

More specifically, when the explicit I/O load of a node is greater than zero,
the I/O-based policy will be leveraged by IOCM-RE as an efficient means to
make load-balancing decisions. When the node exhibits no explicit I/O load,
either the memory-based or the CPU-based policy will be utilized to balance
the system load. In other words, if the node has implicit I/O load due to page
faults, load-balancing decisions are made by the memory-based policy. On the
other hand, the CPU-based policy is used when the node is able to fulfill the
accumulative memory requirements of all tasks running on it. A pseudo code of
the IOCM-RE scheme is presented in Figure 1 below.

Algorithm: IO-CPU-Memory based load balancing (IOCM-RE):
/* Assume that a task j newly arrives at node i */
if IO(j) +

∑

j∈Ni
IO(k) > 0 then

The IO-RE policy is used to balance the system node; /* see Section 3.2 */
else if page(i, j) +

∑

j∈Ni
page(i, k) > 0 then /* see Section 3.1(2) */

The memory-based policy is utilized for load balancing;
else /* see Section 3.1(1) */

The CPU-based policy makes the load balancing decision;

Fig. 1. Pseudocode of the IO-CPU-Memory based load balancing

4 Performance Evaluation

In this section, we experimentally compare the performance of IOCM-RE against
that of three other schemes: CPU-RE [14][15], CM-RE [3], and IO-RE (Section
3.2). The performance metric by which we judge system performance is the mean
slowdown. Formally, the mean slowdown of all the tasks in trace T is given below,
where wi and lC(i) are wall-clock execution time and computation load of task

i. The implicit and explicit disk I/O load of task i are denoted as lpage(i) and
lIO(i), respectively.

slowdown(T) =

∑

i∈T wi
∑

i∈T (nlc(i)
∑

n

j=1
Cj

+
n(lpage(i)+lIO(i))

∑

n

j=1
Dj

)
(7)

Note that the numerator is the summation of all the tasks’ wall-clock execu-
tion time while sharing resources, and the denominator is the summation of all
tasks’ time spent running on CPU or accessing I/O without sharing resources
with other tasks. Since the clusters studied in the simulation experiments are
heterogeneous in nature, we use the average values of CPU power, memory space,
and the disk performance to calculate the execution time of each task exclusively
running on a node.

4.1 Simulator and Simulation Parameters

Harchol-Balter and Downey [1] have implemented a simulator of a distributed
system with six nodes. Zhang et. al [3] extended the simulator by incorporating
memory recourses. Compared to these two simulators, ours possesses four new
features. First, the IOCM-RE and IO-RE schemes are implemented. Second, a
fully connected network is simulated. Third, a simple disk model is added into
the simulator. Last, an I/O buffer is implemented on top of the disk model in each
node. In all experiments, we used the simulated system with the configuration
parameters listed in Table 1. The parameters are chosen in such a way that they
resemble workstations such as the Sun SPARC-20.

Parameters Value Parameters Value

CPU Speed 100-400 MIPS Page Fault Service Time 8.1 ms
RAM Size 32-256 MByte Mean page fault rate 0.01No./MI
Buffer Size 64MByte Data re-access rate,r 5
Context switch time 0.1 ms Network Bandwidth 100Mbps

Table 1. System Parameters. CPU speed and page fault rate are measured by Millions
Instruction Per Second (MIPS) and No./Million Instructions (No./MI), respectively.

Disk I/O operations issued by each task are modeled as a Poisson Process
with a mean arrival rate λ, which is set to 2.0 No./MI in our experiments. The
service time of each I/O access is the summation of seek time, rotation time,
and transfer time. The transfer time is equal to the size of accessed data divided
by the disk bandwidth. Data sizes are randomly generated based on a Gamma
distribution with the mean size of 256KByte.

The configuration of disks used in our simulated environment is based on the
assumption of device aging and performance-fault injection. Specifically, IBM
9LZX is chosen as a base disk and its performance is aged over years to generate
a variety of disk characteristics [12], which is shown in Table 2.

Age sk time R time Bandwidth Age sk time R time Bandwidth

1 year 5.3 ms 3.00ms 20.0MB/s 4 year 7.27ms 4.11ms 7.29MB/s
2 year 5.89ms 3.33ms 14.3MB/s 5 year 8.08ms 4.56ms 5.21MB/s
3 year 6.54ms 3.69ms 10.2MB/s 6 year 8.98ms 5.07ms 3.72MB/s

Table 2. Characteristics of Disk Systems. sk time: seek time, R time: Rotation time

Table 3. Characteristics of Five Heterogeneous Clusters. CPU and memory are
measured by MIPS and MByte. Disks are characterized by bandwidth measured in
MByte/S. HL-Heterogeneity Level

Node system A system B system C system D system E
cpu mem disk cpu mem disk cpu mem disk cpu mem disk cpu mem disk

1 100 480 20 100 480 20 100 480 10.2 50 320 10.2 50 320 5.21
2 100 480 20 150 640 20 150 640 20 200 800 20 200 800 14.3
3 100 480 20 150 640 20 150 640 20 200 800 20 200 800 20
4 100 480 20 50 320 20 50 320 10.2 50 320 14.3 50 320 5.21
5 100 480 20 100 480 20 100 480 20 50 320 14.3 50 320 7.29
6 100 480 20 50 320 20 50 320 10.2 50 320 10.2 50 320 3.72

HL 0 0 0 0.27 0.20 0 0.27 0.20 0.25 0.35 0.28 0.20 0.35 0.28 0.30

4.2 Overall Performance Comparisons

In this experiment, the CPU power and the memory size of each node are set
to 200MIPS and 256MByte. Figure 2 plots the mean slowdown as a function of
disk age. Disks are configured such that five fast disks are one year old, and a
sixth, slower disk assumed an age ranging from 1 to 6 years.

Figure 2 shows that the mean slowdowns of four policies increase consider-
ably as one of the disks ages. This is because aging one slow disk gives rise to
longer I/O processing time. A second observation from Figure 2 is that IO-RE
and IOCM-RE perform the best out of the four policies, and they improve the
performance over the other two policies by up to a factor of 8. The performance
improvement of IO-RE and IOCM-RE relies on the technique that balances I/O
load by migrating I/O-intensive tasks from overloaded nodes to underloaded
ones.

4.3 Impact of Heterogeneity on the Performance of Load-balancing

Policies

In this section, we turn our attention to the impact of system heterogeneity on
the performance of the proposed policies. The five configurations of increasing
heterogeneity of a heterogeneous cluster with 6 nodes are summarized in Table
3. As can be seen from Figure 3, IO-RE and IOCM-RE significantly outperform
the other two policies. For example, IOCM-RE improves the performance over
CPU-RE and CM-RE by up to a factor of 5 and 3, respectively.

Importantly, Figure 3 shows that the mean slowdowns of almost all policies
increase consistently as the system heterogeneity increases. An interesting obser-

0

50

100

150

200

250

300

1 2 3 4 5 6

CPU-RE

CM-RE

IO-RE

IOCM-RE

Age of slow disk (years)

Mean Slowdown

Fig. 2. Mean slowdown as a function of
the age of a single disk

0

50

100

150

200

250

300

System A System B System C System D System E

CPU-RE
CM-RE
IO-RE
IOCM-RE

Mean Slowdown

Fig. 3. Mean slowdown on five heteroge-
neous systems.

vation from this experiment is that the mean slowdowns of IO-RE and IOCM-RE
are more sensitive to changes in CPU and memory heterogeneity than the other
two policies. Recall that system B’s CPU and memory heterogeneities are higher
than those of system A. Compared the performance of system A with that of B,
the mean slowdowns of IO-RE and IOCM-RE are increased by 196.4%, whereas
the slowdowns of CPU-RE and CM-RE are increased approximately by 34.7%
and 47.9%, respectively. The reason is that I/O-aware policies ignore the hetero-
geneity in CPU resources. When the heterogeneity of CPU and memory remain
unchanged, IO-RE and IOCM-RE is less sensitive to the change in disk I/O
heterogeneity than the other three policies. This is because both IO-RE and
IOCM-RE consider disk heterogeneity as well as the effective usage of I/O re-
sources.

5 Conclusion

In this paper, we have studied two I/O-aware load-balancing policies, IO-RE
(I/O-based policy) and IOCM-RE (load balancing for I/O, CPU, and Mem-
ory), for heterogenous clusters executing applications that represent a diverse
workload conditions, including I/O-intensive and memory-intensive applications.
IOCM-RE considers both explicit and implicit I/O load, in addition to CPU
and memory utilizations. To evaluate the effectiveness of our approaches, we
have compared the performance of the proposed policies against two existing
approaches: CPU-based policy (CPU-RE) and CPU-Memory-based policy (CM-
RE). IOCM-RE is more general than the existing approaches in the sense that
it can maintain high performance under diverse workload conditions. A trace-
driven simulation provides us with empirical results to draw three conclusions:
(1) When a workload is I/O-intensive, the proposed scheme improves the per-
formance with respect to mean slowdown over the existing schemes by up to a
factor of 8. (2) The slowdowns of the four policies considerably increase as one of

the disks ages. (3) The slowdowns of almost all the policies increase consistently
with the system heterogeneity.

In this paper, we assumed that parallel applications can be broken into a
number of individual tasks and, therefore, future research will deal with parallel
jobs with inter-dependent tasks. We also plan to evaluate the performance of
the proposed schemes using a set of real I/O-intensive application traces.

6 Acknowledgments

This work was partially supported by an NSF grant (EPS-0091900), a Nebraska
University Foundation grant (26-0511-0019), and a UNL Academic Program
Priorities Grant. Work was completed using the Research Computing Facility at
University of Nebraska-Lincoln.

References

1. Harchol-Balter, M., Downey, A.: Exploiting process lifetime distributions for load
balancing. ACM Transactions on Computer Systems 15 (1997) 253–285

2. Acharva, A., Setia, S.: Availability and utility of idle memory in workstation
clusters. In: Proceedings of the ACM SIGMETRICS Conf. on Measuring and
Modeling of Computer Systems. (1999)

3. Xiao, L., Zhang, X., Qu, Y.: Effective load sharing on heterogeneous networks of
workstations. In: Proc. of International Symposium on Parallel and Distributed
Processing. (2000)

4. Qin, X., Jiang, H., Zhu, Y., Swanson, D.: A dynamic load balancing scheme for
I/O-intensive applications in distributed systems. In: Proceedings of the 32nd
International Conference on Parallel Processing Workshops. (2003)

5. Qin, X., Jiang, H., Zhu, Y., Swanson, D.: Boosting performance for I/O-intensive
workload by preemptive job migrations in a cluster system. In: Proc. of the 15th
Symp. on Computer Architecture and High Performance Computing, Brazil (2003)

6. Scheuermann, P., Weikum, G., Zabback, P.: Data partitioning and load balancing
in parallel disk systems. The VLDB Journal (1998) 48–66

7. Cho, Y., Winslett, M., S. Kuo, J.L., Chen, Y.: Parallel I/O for scientific applica-
tions on heterogeneous clusters: A resource-utilization approach. In: Proceedings
of Supercomputing. (1999)

8. Zhu, Y., Jiang, H., Qin, X., Feng, D., Swanson, D.: Scheduling for improved write
performance in a cost-effective, fault-tolerant parallel virtual file system (CEFT-
PVFS). In: the Fourth LCI International Conference on Linux Clusters. (2003)

9. Zhu, Y., Jiang, H., Qin, X., Feng, D., Swanson, D.: Improved read performance in
a cost-effective, fault-tolerant parallel virtual file system (ceft-pvfs). In: Proc. of
the 3rd IEEE/ACM Intl. Symp. on Cluster Computing and the Grid. (2003)

10. Ma, X., Winslett, M., Lee, J., Yu, S.: Faster collective output through active buffer-
ing. In: Proceedings of the International Symposium on Parallel and Distributed
Processing. (2002)

11. Qin, X., Jiang, H., Zhu, Y., Swanson, D.: Dynamic load balancing for I/O- and
memory-intensive workload in clusters using a feedback control mechanism. In:
Proceedings of the 9th International Euro-Par Conference on Parallel Processing
(Euro-Par 2003), Klagenfurt, Austria (2003)

12. Forney, B., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Storage-aware caching:
Revisiting caching for heterogeneous storage systems. In: Proceedings of the 1st
Symposium on File and Storage Technology, Monterey, California, USA (2002)

13. Geoffray, P.: Opiom: Off-processor I/O with myrinet. Future Generation Computer
Systems 18 (2002) 491–499

14. Franklin, M., Govindan, V.: A general matrix iterative model for dynamic load
balancing. Parallel Computing 33 (1996)

15. Eager, D., Lazowska, E., Zahorjan, J.: Adaptive load sharing in homogeneous
distributed systems. IEEE Trans. on Software Eng. 12 (1986) 662–675

