

In the Proceedings of the 15th Symposium on Computer Architecture and High Performance Computing, Nov.10-12, 2003.

Boosting Performance for I/O-Intensive Workload by
Preemptive Job Migrations in a Cluster System

Xiao Qin Hong Jiang Yifeng Zhu David R. Swanson
Department of Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, NE 68588-0115, {xqin, jiang, yzhu, dswanson}@cse.unl.edu

Abstract

Load balancing in a cluster system has been
investigated extensively, mainly focusing on the effective
usage of global CPU and memory resources. However, if
a significant portion of applications running in the system
is I/O-intensive, traditional load balancing policies that
focus on CPU and memory usage may cause the system
performance to decrease substantially. To solve this
problem, a new I/O-aware load-balancing scheme with
preemptive job migration is presented to sustain the high
performance of a cluster with a diverse set of workload
conditions. The proposed scheme dynamically detects I/O
load imbalance on nodes of a cluster, and determines
whether to preempt some running jobs on overloaded
nodes and migrate them to other less- or under-loaded
nodes. Besides balancing I/O load, the scheme takes into
account both CPU and memory load sharing in clusters,
thereby maintaining the same level of performance as
existing schemes when I/O load is low or well balanced.
Results from a trace-driven simulation show that,
compared to the existing approaches that only consider
I/O with non-preemptive job migrations, the proposed
schemes achieve the improvement in mean slowdown by
up to a factor of 10.

1. Introduction

A cluster consists of a number of nodes, and each node

has a combination of multiple types of resources, such as
CPU, memory, network connectivity and disks. In a
cluster system, dynamic load balancing schemes can
improve system performance by attempting to assign
work, at run time, to machines with idle or under-utilized
resources.

Several distributed load-balancing schemes have been
presented in the literature, primarily considering CPU
[7][8], memory [1][15], or a combination of CPU and

memory [16][17]. Although these load-balancing policies
have been very effective in increasing the utilization of
resources in distributed systems, they have ignored disk
I/O, which is a likely performance bottleneck when a
large number of applications running on clusters are data-
intensive and/or I/O-intensive. Therefore, we believe that
for any dynamic load balancing scheme to be effective in
this new application environment, it must be made “ I/O-
aware” . Typical examples of I/O-intensive applications
include long running simulations of time-dependent
phenomena that periodically generate snapshots of their
state [14], archiving of raw and processed remote sensing
data [4][6], multimedia and web-based applications, to
name just a few. These applications share a common
feature in that their storage and computational
requirements are extremely high. Therefore, the high
performance of I/O-intensive applications heavily
depends on the effective usage of storage, in addition to
that of CPU and memory. Compounding the performance
impact of I/O in general, and disk I/O in particular, is the
steadily widening gap between CPU and I/O speed,
making the load imbalance in I/O increasingly more
crucial to overall system performance. To bridge this gap,
I/O buffers allocated in the main memory have been
successfully used to reduce disk I/O costs, thus improving
the throughput of I/O systems. In this regard, load
balancing with I/O-awareness, when appropriately
designed, is potentially capable of boosting the utilization
of the I/O buffer in each node, which in turn increases the
buffer hit rate and decreases disk I/O access frequency.

This paper evaluates a comprehensive approach, called
Weighted Average Load balancing with Preemptive
Migration, or WAL-PM, to balance a cluster in such a way
that CPU, memory, and I/O resources at each node can be
well utilized. The rest of the paper is organized as follows.
In the section that follows, related work in the literature is
briefly reviewed. Section 3 presents system considerations
and an example to motivate the idea behind the proposed
approach. In Section 4, we describe the WAL-PM scheme.

Section 5 evaluates the performance of the WAL-PM
scheme, and compares it with that of other existing
solutions. Finally, Section 6 concludes the paper by
summarizing the main contributions of this paper.

2. Related work

The issue of distributed load balancing for CPU and

memory resources has been extensively studied and
reported in the literature in recent years. Harchol-Balter et
al. [7] proposed a CPU-based preemptive migration
policy that was more effective than non-preemptive
migration policies. Zhang et al. [17] focused on load
sharing policies that consider both CPU and memory
services among the nodes. Throughout this paper, the
CPU-memory-based load-balancing policy presented in
[17] will be referred to as CM-based policies. The
experimental results show that CM-based policies not
only improve performance of memory-intensive jobs, but
also maintain the same load sharing quality of the CPU-
based policies for CPU-intensive jobs [17].

A large body of work can be found in the literature that
addresses the issue of balancing the load of disk systems
[2][9][12][18][19]. Scheuermann et al. [12] studied the
issues of striping and load balancing in parallel disk
systems. Lee et al. [9] proposed two file assignment
algorithms that minimize the variance of the service time
at each disk. Aerts et al. [2] used randomization and data
redundancy to enable effective load balancing. Our
previous work [18][19] focused on two dynamic
scheduling algorithms to improve the read and write
performance of a parallel file system by balancing the
global workload. The I/O load balancing policies in these
studies have been shown to be effective in improving
overall system performance by fully utilizing the available
hard drives. However, not all of them can be directly
applied for a complex distributed environment where I/O-
intensive jobs may share resources with many other
memory-intensive and CPU-intensive jobs.

We have developed a feedback control mechanism to
improve the performance of a cluster by manipulating the
I/O buffer size [11]. The scheme presented in this paper is
complementary to the existing buffering techniques,
thereby providing additional performance improvement
when combined with a feedback control mechanism.

Very recently, three load balancing models, which
consider I/O, CPU and memory resources, have been
presented [10][13][16]. In [13], a dynamic load-balancing
scheme, tailored for the specific requirements of the
Question/Answer application, is proposed along with a
performance analysis of the approach. The migration
scheme studied in [13] is non-preemptive, therefore being
referred to as WAL-RE (Weighted Average Load with
Remote Execution). In the authors’ previous work,
another I/O-aware load-balancing scheme, referred to as

IOCM, is studied [10]. IOCM allows a job’s I/O
operations to be conducted by a node that is different from
the one in which the job’s computation is assigned,
thereby permitting a job to access remote I/O. The result
shows that IOCM significantly improves the slowdown
performance over those load-balancing schemes that do
not allow remote I/O access. The two policies proposed in
[10][13] are similar in the sense that the policies are non-
preemptive. The new WAL-PM scheme, however, permits
a running job to be preempted and migrated if its
migration is expected to improve the performance.

One of the load-balancing policies presented in [16]
considers the three types of resources in a similar way as
WAL-RE, and results show that the policy improves
overall job execution performance. Besides WAL-RE,
Zhang et al. [16] also proposed a WAL-based preemptive
migration policy, which has worse performance than that
of WAL-RE under memory-intensive workload. The
reasons for this result are two-fold. First, remote
execution has a significantly lower data movement cost
than that of preemptive migration for jobs with high
memory demand [16]. Second, the migration cost might
not always be considered as a criterion to choose the
eligible jobs for migration. Since the preemptive
migrations in [16] are proposed for memory-intensive
workload, data migration cost only take memory
migration into account, thereby ignoring I/O migration
cost as an important component of the migration cost in
load-balancing. In contrast, the WAL-PM scheme
proposed in this study considers both memory and I/O
migration cost as a criterion to determine jobs that are
eligible for migration. Trace-driven simulations show that,
compared with the CM-based and WAL-RE policies, the
proposed WAL-PM scheme significantly enhances the
overall performance of a cluster system under I/O
intensive workload. The results also show that, under
CPU-memory-intensive workload, WAL-PM is more
effective than IO-based polices, and sustains the same
level of performance as the CM-based policy.

3. Problem Description

We consider the problem of distributed dynamic load

balancing among a cluster of nodes connected by a high-
speed network, where each node maintains reasonably up-
to-date global load information by periodically
exchanging load status with other nodes. Jobs arrive at
each node dynamically and independently, and share
resources available there. The nodes are assumed to be
capable of migrating a newly arrived job or a running job
preemptively to another node if needed.

In this study, we consider the sharing of, and scheduling
for, three main resources, namely, CPU, main memory,
and disk I/O. For simplicity, we assume that all nodes are
homogeneous, and the proposed scheme may be extended

to handle heterogeneous systems by incorporating a
conversion mechanism for relative load. The network in
our model is fully connected and homogenous in the sense
that communication delay between any pair of nodes is
the same.

To help describe the problem of a dynamic load-
balancing scheme in a cluster and motivate the proposed
solution that improves on previous ones, we first present
the following example:

Assume a cluster with two identical nodes, where two
jobs have been assigned to node 1 and one job has been
assigned to node 2. The CPU, memory, and I/O resource
requirements and execution status of each job are listed in
Table 1. When an I/O-intensive job is migrated, load-
balancing schemes are required to move the data that
resides in the local disk along with the migrated job,
making the data available locally to the migrated job.
Mig_data in Table 1 denotes the amount of data stored in
the local disk that has to be migrated together with its job
once the migration is initiated. The discrepancy in
Mig_data size among the jobs might be due either to the
variety of I/O access patterns or to the various initial data
sizes. The I/O access rate is measured by the number of
disk I/O accesses per unit time, assuming that each access
involves a fixed amount of data (say, one block). This I/O
access rate for a given job can be viewed as a measure of
the average number of instructions between two
consecutive disk I/O accesses. For example, if the average
I/O service time of each I/O access is 8.0ms, then the total
I/O service time required by job 3 will be 3200ms,
because there will be 400 I/O accesses in job 3, which is
significantly larger than its CPU time. This workload
suggests that balancing I/O load is a more effective means
of improving the system performance than balancing CPU
or memory. Therefore, for illustrative purposes, we will
only consider how to dynamically balance the I/O load in
this example.

 Table 1. Resource requirements of the jobs
 and their assignment

Now consider job 4 arriving at node 1 with the resource

demand shown in Table 1. The total I/O load in node 1 is
9 No./ms, whereas the I/O load in node 2 is only 1
No./ms, indicating that the system is I/O load imbalanced.
The current imbalance might be caused by the fact that
some jobs with high I/O demand have just been
completed and left node 2. Since job 4 will worsen the
imbalance of I/O load between the two nodes if it is
assigned directly to node 1, efforts must be made to

counterbalance the I/O load. There are two approaches to
balance the system:

Approach 1: Job 4 is executed on remote node 2. This
approach is referred to as non-preemptive migration, or
remote execution.

Approach 2: Job 4 is executed locally at node 1, and job
2 at node 1 is preempted and migrated to node 2. This
approach is called preemptive migration.

The performance of the two approaches is compared
with respect to the following two aspects, namely, load-
balancing effect and migration cost.

(1) Approach 1 reduces the discrepancy in I/O load
between the two nodes from 8 No./ms to 6 No./ms, by
adding 2 No./ms of I/O load to node 2. This leaves the
system still imbalanced in I/O load. Approach 2, however,
leads to a perfect I/O load balancing between the two
nodes. This result illustrates that, in the presence of a
variety of I/O load among jobs under I/O intensive
workload, preemptive migration has a better ability to
balance the I/O load than non-preemptive migration does.

(2) In both approaches data resident in the local disk
must be migrated to the remote disk, by first reading out
of the local disk, then transferring through the network,
before storing in the remote disk, thus incurring a cost of
two disk accesses and one network transaction. Assume
that the network bandwidth is 1Gbps, and the disk
bandwidth is 40Mbyte/Sec. Thus, network transaction and
disk access times for migrating data for job 4 are 937.5ms
and 6000ms, respectively. However, the data migration
cost for job 2 is only 39ms for network transfer and
125ms for disk accesses. This example shows that
Approach 2 can explore far more opportunities than
Approach 1 for reducing I/O load imbalance at low
migration costs by considering not only incoming jobs but
also currently running jobs.

4. Weighted Average Load-balancing
 with Preemptive Migration

It has been observed that finding an optimal solution for

the general problem of load-balancing in a distributed
system, even for relatively simple formulations of this
problem, is an NP-hard problem [5]. Consequently, the
WAL-PM scheme, an I/O-aware load-balancing scheme
with preemptive migration, presented here is heuristic in
nature. The main goals of the WAL-PM scheme are to:
 (1) balance I/O usage of all nodes in the system with best
effort;
(2) balance CPU and memory resources with best effort;
and
(3) optimize (1) and (2) by judiciously preempting
running jobs to migrate with minimized migration costs.

For a newly arrived job j at a node i, the WAL-PM
scheme attempts to balance the system load in the

Job Node CPU Age Memory I/O rate Mig_data
1 1 300ms 5ms 200KB 4No./ms 30 MB
2 1 800ms 2ms 300KB 5No./ms 5 MB
3 2 400ms 3ms 400KB 1No./ms 15 MB

4(New) ? 700ms 0ms 500KB 2No./ms 120 MB

following steps. First, the load of node i is updated by
adding job j’s load, assigning the newborn job to the local
node. Second, if the load of node i is the maximum among
all nodes, meaning that the node is overloaded, a
migration is to be initiated. Third, a candidate node k, that
has the lowest load, is chosen. The load of the candidate
must be less than the global average load. If a candidate
node is not available, WAL-PM will be terminated and no
migration will be carried out. Fourth, WAL-PM
determines a set EM of jobs eligible for migration such
that the migration of each job in EM is able to potentially
reduce the slowdown of the job. Fifth, a job q from EM is
judiciously selected in such a way that the migration
benefit is maximized. In fact, this step substantially
improves the performance over the WAL-based scheme
with non-preemptive migration. Finally, job q is migrated
to the remote node k, and the load of nodes i and k is
updated in accordance with job q’s load.

An outline of the WAL-PM scheme is presented in
Figure 1 below.

The WAL-PM scheme answers three basic questions,

namely, (1) when to migrate a job, (2) which job to
migrate, and (3) to which node to migrate the selected job.
The WAL-PM scheme deals with the first and the third
questions in a similar approach as the WAL-RE scheme
[10][13], as described in Steps 2 and 3. Therefore, the rest
of the paper will focus on deciding which job to migrate,
that is, to judiciously select an eligible job in EM from the
overloaded node to migrate.

The expected response time of an eligible migrant on
the source node, by design, is greater than the sum of its
expected response time on the destination node and the
migration time (cost). In what follows, the expected
response time of a candidate migrant j on node i is given
in the following equation:

�
�
�

�

�
�
�

�

−
×Λ

+−+−=
)1(2

)(
)()()()(),(

2

i

ii
ijjjijj

sE
sEatLEatjir

ρ
λ , (1)

where aj , tj , and λj are the age, computation time, and I/O
access rate of job j, respectively si is the I/O service time,
and ρi is the utilization of the disk in node i. E(Li)
represents the mean CPU queue length Li, and Λi denotes
the aggregate I/O access rate in node i.

The two terms on the right hand side of Equation (1)
represent the CPU exectuion time and the I/O processing
time, respectively. It is assumed that I/O access is
synchronized with its CPU processing, thus, the response
time of a job is the summation of CPU response time and
I/O reponse time. Round-robin scheduling (time-sharing)
is employed as the CPU scheduling policy, and the disk of
each node is modeled as a single M/G/1 queue [9]. The
aggregate I/O access rate, Λi, is defined as:

 �
∈

′=Λ
iMk

ki λ , where
)(i

k
k LE

λλ =′ . (2)

In Equation (2), Mi is a set containing all the jobs that

are assigned to node i, and λk′ is the effective I/O access
rate imposed on the disk by job k, taking the effect of
time-sharing into account. To accurately estimate the
effective I/O access rate, λk, measured in a non-shared
environment, must be deflated by the time-sharing factor,
which is E(Li). Based on λk′, the disk utilization can be
expressed as: �

∈

′=
iMk

kki sλρ .

 Let pk
IO be the probability of an I/O access being from

job k on node i, we then have pk
IO = λk′/Λi. Therefore, the

mean I/O service time, used in Equation (1), can be
calculated as follows:

 () ()��
∈∈ Λ

=′
Λ

==
ii Mk i

i
kk

iMk
i

IO
ki sspsE

ρλ1
)(, and

 () ()��
∈∈

′
Λ

==
ii Mk

k
iMk

i
IO
ki sspsE 222 1

)(λ . (3)

Let pk

CPU denote the probability of a job k being
executed by CPU or waiting in the CPU queue, as
opposed to waiting for I/O access. We have

)1/(1)/(kkkkkkk
CPU
k sstttp λλ +=+= . Thus, the mean CPU

queue length, used in Equation (1) and (2), becomes:

 ��

∈∈ +
==

ii Mk kkMk

CPU
ki s

pLE
λ1

1
)(. (4)

Based on Equation (1), the set of eligible migrant jobs

becomes:

WAL-PM(Input: Job j, Node i)
1. Assign job j to node i, and add the load of job j into the

load of node i;
2. if the weighted average load index indicates that node i is

overloaded then
3. Select a node k with the smallest value of load;
 if a candidate node is not available then
 Preemptive migration is terminated
4. Determine a set of jobs EM(i, k), in which jobs have
 been assigned to node i and are eligible for migration;
5. if the set EM is not empty then
 Select a job q in EM(i, k) that gains a maximal
 benefit from migration;
 Migrate job q from node i to node k;

Figure 1. Pseudo code of the Weighted-Average-
Load based policy with Preemptive Migration.

 { }ji cjkrjirMjkiEM +>∈=),(),(),(, (5)

where k represents a destination node, and cj is the
migration time of job j. In other words, each eligible
migrant’s expected response time on the source node is
greater than the sum of its expected response time on the
destination node and the expected migration cost, which is
modeled as follows,

=jc
disk

INIT
j

net

INIT
j

b

d

b

d
e ×++ 2 for remote execution, (6)

disk

W
j

INIT
j

net

W
j

INIT
j

net

j

b

dd

b

dd

b

m
f

+
×+

+
++ 2 for migration,

where e and f are assumed to be the fixed costs for remote
execution and preemptive migration, respectively. bnet and
bdisk denote the network bandwidth and disk bandwidth,
respectively. dj

INIT represents the amount of data that the
job initially accessed, and this amount of data is referred
to as initial data throughout this paper. Thus the last two
terms of the upper line of Equation (6) represent the
migration time spent on transmitting data over the
network and on accessing source and destination disks,
respectively. dj

W and mj denote, respectively, the amount
of disk (I/O) data and of main memory data generated at
the runtime by the job. Similar to the upper line of
Equation (6), the last three terms of the lower line of
Equation (6) represent the migration time spent over the
network on transmitting memory data and disk data, and
on accessing the source and destination disks for the
migrated disk data. Disk data dj

W is proportional to the
number of write operations that have been issued by the
job at the runtime and the average amount of data dj

RW
stored by the write operations. dj

W is inversely
proportional to the data re-access rate r j, defined to be the
number of times the same data is accessed by the job.
Thus, dj

W is defined by the following equation,

1+

×××
=

j

RW
jjjjW

j r

dwa
d

λ , (7)

where wj is the percentage of I/O operations that store
data to the local disk, and the number of write operations
is a product of aj, λj, and wj in the numerator.

In Step (5), WAL-PM chooses one job j from set EM(i,
k) (Equation 5) in such a way that the benefit of migration
is maximized. To find a maximizing factor, we define an
objective function, called the migration cost-effectiveness
(MCE), which measures the amount of I/O load migrated
per unit migration cost. More specifically, for job j,

jjj cajMCE /)()(λ×= , since the numerator represents the

I/O load of job j while the denominator indicates

migration cost of the job. Thus, the best job in EM to
choose for migration is the one with the maximum MCE
value, as shown in Equation (8),

 { })()(
),(

pMCEMAXjMCE
kiEMp∈

= , where),(kiEMj ∈ (8)

Besides selecting an appropriate migrant in Step (5),

WAL-PM estimates the weighted average load index in
Step (1). Since there are three primary resources
considered in a cluster, the load index of each node i is the
weighted average of CPU, memory and I/O load, thus:

)()()()(iloadWiloadWiloadWiload IOIOMEMMEMCPUCPU ×+×+×= ,(9)

where loadCPU(i), loadMEM(i), and loadIO(i) are individual
load indices for CPU, memory and I/O resources,
respectively. The weight of each resource implies the
significance of the resource and the feature of workload.
For example, in an I/O-intensive workload where disk I/O
processing dominates the overall performance of a cluster,
WIO, WCPU, and WMEM, can be configured to 1, 0 and 0,
respectively. Therefore, WAL-PM, under the I/O-intensive
workload, only attempts to balance I/O resources,
ignoring CPU and memory resources.

The three load indices for the workload of CPU,
memory and I/O are described below:

(1) The CPU load index of node i is characterized by the
length of the CPU waiting queue [16][17], denoted as
loadCPU(i).

(2) The memory load index of node i, denoted as
loadmem(i), is the sum of the memory space allocated to
those jobs with their computational tasks assigned to node
i. More precisely, let lmem(j) represent the memory load
(requirement) of job j, then

 �

∈

=
iMj

memmem jliload)()(, (10)

(3) The I/O load index measures two types of I/O

accesses, namely, the implicit I/O requests induced by
page faults and the explicit I/O requests resulting from the
I/O tasks. Let lpage(i, j) denote the implicit I/O load, and
lIO(i, j) the explicit I/O load, then, the I/O load index of
node i can be defined as:

 ��

∈∈

+=
ii Mj

IO
Mj

pageIO jiljiliload),(),()(. (11)

Although it is straightforward to compute CPU load and

memory load, the calculation of I/O load is more
complicated because of the need to determine the implicit
and the explicit I/O load.

Let rmem(j) denote the memory space requested by job j,
and nmem(i) represent the memory space in bytes that is
available to the job on node i. When the node’s available

memory space is larger than or equal to the memory
demand, there is no implicit I/O load imposed on the disk.
Conversely, when the memory space of a node is unable
to meet the memory requirements of the jobs, the node
encounters a large number of page faults, leading to a
high implicit I/O load. Implicit I/O load depends on three
factors, namely, the available user memory space, the
page fault rate, and the memory space requested by the
jobs assigned to node i. More precisely, lpage(i, j) can be
defined as follows [16][17], where µi denotes the page
fault rate of the node.

lpage(i, j) = 0 if)()(iniload memmem ≤ ,

)(

)(

in

kr

mem

Mk
mem

i
i

�
∈×µ otherwise. (12)

lIO(i, j) is proportional to I/O access rate and inversely

proportional to I/O buffer hit rate h(i, j). Therefore, lIO(i, j)
is approximated by the following expression:

)],(1[),(jihjil jIO −×= λ . (13)

The hit rate of I/O access for job j running on node i is

approximated by the following formula:

 h(i, j) =
1+j

j

r

r if dbuf(i, j) ≥ ddata(j),

)(

),(

1 jd

jid

r

r

data

buf

j

j ×
+

 otherwise, (14)

where dbuf(i, j) is the buffer size allocated to job j, and
ddata(j) is the amount of data job j retrieves from or stored
to the disk, given a buffer with infinite size. I/O buffer in
a node is a resource shared by multiple jobs in the node,
and the buffer size a job can obtain in node i at run time
heavily depends on the jobs’ access patterns, characterized
by I/O access rate and average data size of I/O accesses.
ddata(j) linearly depends on access rate, computation time
and average data size of I/O accesses dj

RW, and ddata(j) is
inversely proportional to I/O re-access rate. dbuf(i, j) and
ddata(j) are estimated using the following two equations:

{ })(),(id
d

d
jid buf

Mk

RW
jk

RW
jj

buf

i

×
×

×
=
�
∈

λ
λ (15)

1

)(
+
××

=
j

RW
jjj

data r

dt
jd

λ . (16)

5. Performance evaluation

To study the performance of the I/O-aware dynamic
load-balancing scheme presented above, we have
performed a large number of trace-driven simulations. In
this section, we compare the performance of WAL-PM
with the existing schemes, namely, IO-based, CM-based,
and WAL-RE. In what follows we give a brief description
of these three policies.

(1) IO-based load balancing. The load index in this
policy represents only the I/O load, given in expression
(11). For a job arriving in node i, the IO scheme greedily
assigns the computational and I/O tasks of the job to the
node that has the least accumulated I/O load.

(2) CPU-Memory-based load balancing [16]. When a
node i has sufficient memory space, the CM scheme
balances the system using CPU load index, loadCPU(i), as
defined in Section 4. When the system encounters a large
number of page faults due to insufficient memory space
for the running jobs, memory load index, loadmem(i), given
in expression (10), is used by CM to balance the system.

(3) Weighted-Average-Load-based balancing (WAL-RE)
[12]. For every node I, the load index defined in WAL is
the weighted average of the required resource load:

)()()(iloadWiloadWiload CPUCPUIOIO ×+×= . (17)

For a new coming job j, WAL assigns it to a node that is
not overloaded. If such a node is not available, WAL
dispatches the job to a node with the smallest value of the
load index. In our experiments, both WIO and WCPU are set
to 0.5, assuming that I/O and CPU are equally important
in the workload.

The performance metric used in our simulations is
slowdown [7][16], since jobs may be delayed because of
waiting in queues or being migrated to remote nodes.
Since the definition of slowdown in [7][16] does not
consider time spent on I/O access, we extend the
definition by incorporating I/O access time. The extended
definition of slowdown for a job j is given as:

)(_)(_

)(_
)(

jtimeIOjtimeCPU

jtimewall
jslowdown

+
= , (18)

where wall_time(j) is the total time the job spends
running, accessing I/O, waiting, or migrating.

5.1 Simulator and Simulation Parameters

Before presenting the empirical results, the simulation

model and the workload are discussed.
To study dynamic load balancing, Harchol-Balter and

Downey [7] implemented a simulator of a distributed
system with 6 nodes, in which round-robin scheduling is
employed. The load balancing policy studied in this
simulator is CPU-based. Zhang et. al [16] extended the
simulator, incorporating memory resources into the

simulation system. Based on the simulator, presented in
[16], our simulator incorporates the following four new
features:

(1) The WAL-PM, WAL-RE, and IO-based schemes are
implemented in the simulator;

(2) A fully connected network is simulated;
(3) A simple disk model is added into the simulator;
(4) I/O buffer, used to reduce the disk I/O access

frequency, is implemented on top of the disk model.
In all experiments, we used the simulated system with

the configuration parameters listed in Table 1. The
parameters for CPU, memory, disks, and network are
chosen in such a way that they resemble a typical cluster
of the current day.

Table 1. Data Characteristics

 Parameter Values assumed
CPU Speed 800(million instructions/second)
RAM Size 640Mbytes
Buffer Size 160Mbytes
Network Bandwidth 1Gbps, 100Mbps,10Mbps
Page fault service time 8.1 ms
Page fault rate 0.1, 1.0, 2.0 per ms
Time slice of CPU 10 ms
Context switch time 0.1 ms
seek and rotation time 8.0 ms
Disk transfer rate 40 MB/s
I/O access rate 0.1, 0.2, …, 2.9

Disk accesses from each job are modeled as a Poisson
process with a mean arrival rate λ. The service time of
each I/O access is modeled as below:

I/O_Service_time = Seek_time + Rotational_delay
 + Ttransfer_time, (19)

rateTransfer

sizeData
timeTransfer

_

_
_ = , (20)

where Seek_time is the disk arm positioning time for a
disk head move to the desired cylinder, Rotational_delay
is the time for the desired block to rotate under the disk
head, and Transfer_time is the time to read/write data in
the block. Transfer_time equals the amount of data
retrieved from or stored to the disk divided by the transfer
rate. We assume that both Seek_time and Rotational_delay
are fixed, and the transfer time for each I/O access is
computed by expression (20). Data sizes of the I/O
requests are randomly generated based on a Gamma
distribution, since the sizes chosen in this way reflect
typical data characteristics for MPEG-1 data [3], which is
retrieved by many multimedia applications. The data
characteristic for the I/O requests in our simulation is
given in Table 2.

Table 2. Data Characteristics

Data Size Mean 100 Kbyte
Gamma Distribution Standard Deviation 50 Kbyte

We modified the traces used in [7][16], adding a
randomly generated I/O access rate to each job. In the
traces used in our experiments, the CPU and memory
demands remain unchanged, and the memory demand of
each job is chosen based on a Pareto distribution with the
mean size of 4Mbytes [16].

5.2 I/O-Intensive Workload

To stress the I/O-intensive workload in this experiment,

the page fault rate is fixed at a very low value of
0.5No./ms, implying that, even when the requested
memory space is larger than the allocated memory space,
page faults do not occur frequently. This workload reflects
a scenario where memory-intensive jobs exhibit high
temporal and spatial locality of access. Since the
workload of this experiment is highly I/O-intensive and
thus heavily biased to I/O resources, the weights of the
three load indices, WCPU, WMEM, and WIO, are fixed to 0, 0
and 1, respectively. This configuration assumes that I/O
resources are more important than CPU and memory in an
I/O intensive workload. Figure 2 plots slowdown as a
function of the maximal I/O access rate in the range
between 2.4 No./ms and 2.9 No./ms with increments of
0.1 No./ms. The mean slowdowns of IO_RE and IO_PM
are almost identical to those of WAL-RE and WAL-PM,
respectively, and therefore are omitted from Figure 2.

The slowdown of CM-RE is also omitted from Figure 2,

since its performance is almost the same as that of CM-
PM. This is because, when the page fault rate is low, there
is little incentive for CPU-Memory-based (CM-based)
policies have to migrate jobs, whether preemptive or not,
making CM-RE and CM-PM equally unlikely to improve
the overall system performance any further.

Figure 2. Mean slowdown as a function of
the I/O access rate, on a trace with a page
fault rate of 0.5 No./ms

�

���

���

���

���

�	���

�
���

�����

�	���

�
�
� �
��� ����� �
��� ����� �
���

CM-PM

WAL-RE

WAL-PM

I/O access rate (AR) No./ms

Mean Slowdown

Figure 2 reveals that the mean slowdowns of the three
policies all increase with the I/O load. This is because, as
CPU load and memory demands are fixed, high I/O load
leads to a high utilization of disks, causing longer waiting
time on I/O processing.

The results further show that the WAL-RE scheme
significantly outperforms the CM-RE and CM-PM
policies, suggesting that the CM-based policies are not
suitable for I/O intensive workload. For example, as
shown in Figure 2, WAL-RE reduces the mean slowdown
by up to a factor of 2 (with an average of 112%). This is
because CM-based policies only balance CPU and
memory load, ignoring the imbalanced I/O load of
clusters under the I/O intensive workload.

More interestingly, the proposed WAL-PM policy
improves the performance even over WAL-RE by virtue
of preemptive job migrations. For example, WAL-PM
reduces the slowdown of WAL-RE by up to a factor of 10
(with an average of 353%), and WAL-PM improves the
performance in terms of slowdown over both CM-RE and
CM-PM by up to a factor of 20. Consequently, the
slowdowns of CM-based policies and WAL-RE are more
sensitive to I/O access rate than WAL-PM does. This
performance improvement of WAL-PM over WAL-RE
can be explained by the following reasons. First, one
problem encountered in the WAL-RE policy is that the
I/O demand of a newly arrived job may not be high
enough to offset the migration overhead, leading the
node’s I/O load to accumulate. However, WAL-PM
considers all existing jobs on a node, in addition to the
newly arrived job. Therefore, WAL-PM can find more
(“optimal”) migration opportunities than WAL-RE.
Second, in the non-preemptive scheme, once a job with
high I/O demand misses the opportunity to migrate it will
never have a second chance even if it soon becomes one
of the best candidate migrants due to the load dynamics.
Third, even when the net performance gain is insignificant
and such migration consumes network resources, the non-
preemptive migration policies might still have a newly
arrived job with low I/O requirement migrated to a remote
node.

5.3 CPU-Memory Intensive Workload

If Section 5.2 presented a best case scenario for the

proposed WAL-PM scheme since the workload there was
highly I/O-intensive, then this section shows the opposite,
a worst case scenario for WAL-PM, namely, subjecting it
to a highly CPU-memory-intensive workload. To simulate
a memory intensive workload, the I/O access rate is fixed
at a low value of 0.1 No./ms, keeping the I/O demands of
all jobs at a low level. The results of the mean slowdown
as a function of the page fault rate are summarized in
Figure 3. The page fault rate is set from 7.2No./ms to
8.8No./ms with increments of 0.2No./ms. For the WAL-

based policies, WCPU, WMEM, and WIO are fixed to 0.1, 0.9
and 0, respectively.

The slowdowns of the CM-based schemes are omitted

from Figure 3, since their performance of is nearly
identical to that of the WAL-based schemes. The reason
for this is that WAL-RE and WAL-PM judiciously adjust
the weighted load index to meet the demands of CPU-
memory intensive workload. If the weighted load index is
wisely configured in accordance with the CPU-memory
intensive workload, the WAL-RE and WAL-PM policies
gracefully reduce to CM-RE and CM-PM, respectively.

When the page fault rate is higher and the I/O rate is

low, WAL-RE and WAL-PM outperform the IO_RE and
IO_PM considerably. For example, the WAL-based
policies reduce the slowdowns over the IO-based policies
by up to 40.4% (with an average of 30.4%). The reason
for this result is that IO-based policies only attempt to
balance explicit I/O load, ignoring the implicit I/O load
resulted from page faults. When the page fault rate is high
and the explicit I/O load is low, balancing explicit I/O
load does not make a significant contribution to balancing
the overall system load.

6. Conclusions

In this paper, we have proposed a dynamic load

balancing policy, referred to as WAL-PM (Weighted-
Average-Load based policy with Preemptive Migration),
for cluster systems executing applications that represent
general and practical workload including intensive I/O
activities. WAL-PM considers I/O load, in addition to
CPU and memory utilizations. It boosts the performance
of both I/O-aware and CPU-Memory-aware load-
balancing schemes under I/O-intensive workload, by

Figure 3. Mean slowdown as a function of
the page fault rate, on the trace with an
I/O access rate of 0.1 No./ms

�

���

���

���

���

� �

	
�

�
� � �
� � ��� 	 ����� � ��� � ��� � ��� 	 �
���

WAL_RE
WAL_PM
IO_RE
IO_PM

Number of Page Fault Per Millisecond

Mean Slowdown

considering not only the newly arrived jobs but also older,
running jobs as candidate migrant jobs, and by migrating
jobs that are the most migration cost-effective.

To evaluate the performance of WAL-PM, we compare
it with four existing approaches, namely, (1) CPU-
Memory-based policy with preemptive migration (CM-
PM), (2) CPU-Memory-based policy with non-preemptive
migration (CM-RE), (3) IO-based policy with non-
preemptive migration (IO_RE), and (4) Weighted-
Average-load based policy with non-preemptive migration
(WAL-RE). For comparison purposes, IO-based policy
with preemptive migration (IO_PM) is also simulated and
compared with WAL-PM. WAL-PM is more general than
the other five approaches, and is able to maintain a high
performance under a diverse range of workload
conditions. A trace-driven simulation provides extensive
empirical results demonstrating that dynamic load
balancing with preemptive job migrations under I/O-
intensive workload is not only necessary but also highly
effective. In particular, the proposed scheme improves the
performance over the existing non-preemptive I/O-aware
schemes by up to a factor of 10 (with an average of
353%). On the other hand, it outperforms the existing
CPU-Memory-based schemes by up to a factor of 20
(with an average of 398%) when the workload is I/O
intensive.

6. Acknowledgements

This work was partially supported by an NSF grant

(EPS-0091900), a Nebraska University Foundation grant
(26-0511-0019), and a UNL Academic Program Priorities
Grant. Work was completed using the Research
Computing Facility at University of Nebraska-Lincoln.
We are grateful to the anonymous referees for their
insightful suggestions and comments.

References

[1] A. Acharya and S. Setia, “Availability and Utility of Idle
Memory in Workstation Clusters,” Proc. ACM SIGMETRICS
Conf. Measuring and Modeling of Computer Systems, May
1999.
[2] J. Aerts, J. Korst, and S. Egner, “Random duplicate storage
for load balancing in multimedia servers,” Information
Processing Letters, Vol. 76/1-2, pp. 51-59, 2000.
[3] E. Balafoutis, G. Nerjes, P. Muth, M. Paterakis, P.
Triantafillou, and G. Weikum, "Clustered Scheduling
Algorithms for Mixed-Media Disk Workloads", Proc. Int’ l Conf.
on Cluster Computing (CLUSTER 2002), 2002.
[4] C.Chang, B. Moon, A. Acharya, C. Shock, A. Sussman, J.
Saltz, “Titan: A High-Performance Remote-sensing Database,”
Proc. of Int’ l Conf. on Data Engineering, 1997.
[5] L. Chen and H. Choi, “Approximation Algorithm for Data
Distribution with Load Balancing of Web Servers,” Proc. Int’ l
Conf. on Cluster Computing (CLUSTER 2001), 2001.

[6] R. Ferreira, B. Moon, J. Humphries, A. Sussman, J. Saltz, R.
Miller, and A. Demarzo, “ the Virtual Microscope,” Proc. of the
1997 AMIA Annual Fall Symposium, pp. 449-453, Oct. 1997.
[7] M. Harchol-Balter and A. Downey, “Exploiting Process
Lifetime Distributions for Load Balacing,” ACM transaction on
Computer Systems, vol. 3, no. 31, 1997.
[8] C. Hui and S. Chanson, “ Improved Strategies for Dynamic
Load Sharing,” IEEE Concurrency, vol.7, no.3, 1999.
[9] L. Lee, P. Scheauermann, and R. Vingralek, “File
Assignment in Parallel I/O Systems with Minimal Variance of
Service time,” IEEE Trans. on Computers, Vol. 49, No.2,
pp.127-140, 2000.
[10] X. Qin, H. Jiang, Y. Zhu, and D. Swanson, “A Dynamic
Load Balancing Scheme for I/O-Intensive Applications in
Distributed Systems,” Proc. of the 32nd International
Conference on Parallel Processing Workshops (ICPP 2003
Workshops), Taiwan, October 6-9, 2003.
[11] X. Qin, H. Jiang, Y. Zhu, and D. Swanson, “Dynamic Load
balancing for I/O- and Memory-Intensive workload in Clusters
using a Feedback Control Mechanism,” Proc. of the 9th
International Euro-Par Conference on Parallel Processing
(Euro-Par 2003), Klagenfurt, Austria, August 26- 29, 2003.
[12] P. Scheuermann, G. Weikum, P. Zabback, “Data
Partitioning and Load Balancing in Parallel Disk Systems,” The
VLDB Journal, pp. 48-66, July, 1998.
[13] M. Surdeanu, D. Modovan, and S. Harabagiu,
“Performance Analysis of a Distributed Question/Answering
System,” IEEE Trans. on Parallel and Distributed Systems, Vol.
13, No. 6, pp. 579-596, 2002.
[14] T. Tanaka, “Configurations of the Solar Wind Flow and
Magnetic Field around the Planets with no Magnetic field:
Calculation by a new MHD,” Journal of Geophysical Research,
pp. 17251-17262, Oct. 1993.
[15] G. Voelker, “Managing Server Load in Global Memory
Systems,” Proc. ACM SIGMETRICS Conf. Measuring and
Modeling of Computer Systems, May 1997.
[16] L. Xiao, S. Chen, and X. Zhang, “Dynamic Cluster
Resource Allocations for Jobs with Known and Unknown
Memory Demands”, IEEE Transactions on Parallel and
Distributed Systems, vol.13, no.3, 2002.
[17] X. Zhang, Y. Qu, and L. Xiao, “ Improving Distributed
Wrokload Performance by Sharing both CPU and Memory
Resources,” Proc. 20th Int’ l Conf. Distributed Computing
Systems (ICDCS 2000), Apr. 2000.
[18] Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson,
“Scheduling for improved write performance in a Cost-
Effective, Fault-Tolerant Parallel Virtual File System (CEFT-
PVFS),” ClusterWorld Conference and Expo Partners with the
Fourth LCI International Conference on Linux Clusters: The
HPC Revolution 2003, San Jose, California, June 24-26, 2003. �
[19] Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson,
“ Improved Read Performance in CEFT-PVFS: Cost Effective,
Fault-Tolerant Parallel Virtual File System,” Proc. of IEEE/
ACM CCGrid, pp.730-735. Workshop on Parallel I/O in Cluster
Computing and Computational Grids, Japan, May 2003.

