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Abstract 

Load balancing in a cluster system has been 
investigated extensively, mainly focusing on the effective 
usage of global CPU and memory resources. However, if 
a significant portion of applications running in the system 
is I/O-intensive, traditional load balancing policies that 
focus on CPU and memory usage may cause the system 
performance to decrease substantially. To solve this 
problem, a new I/O-aware load-balancing scheme with 
preemptive job migration is presented to sustain the high 
performance of a cluster with a diverse set of workload 
conditions. The proposed scheme dynamically detects I/O 
load imbalance on nodes of a cluster, and determines 
whether to preempt some running jobs on overloaded 
nodes and migrate them to other less- or under-loaded 
nodes. Besides balancing I/O load, the scheme takes into 
account both CPU and memory load sharing in clusters, 
thereby maintaining the same level of performance as 
existing schemes when I/O load is low or well balanced. 
Results from a trace-driven simulation show that, 
compared to the existing approaches that only consider 
I/O with non-preemptive job migrations, the proposed 
schemes achieve the improvement in mean slowdown by 
up to a factor of 10.  
 
 
1. Introduction 

 
A cluster consists of a number of nodes, and each node 

has a combination of multiple types of resources, such as 
CPU, memory, network connectivity and disks. In a 
cluster system, dynamic load balancing schemes can 
improve system performance by attempting to assign 
work, at run time, to machines with idle or under-utilized 
resources.  

Several distributed load-balancing schemes have been 
presented in the literature, primarily considering CPU 
[7][8], memory [1][15], or a combination of CPU and 

memory [16][17]. Although these load-balancing policies 
have been very effective in increasing the utilization of 
resources in distributed systems, they have ignored disk 
I/O, which is a likely performance bottleneck when a 
large number of applications running on clusters are data-
intensive and/or I/O-intensive. Therefore, we believe that 
for any dynamic load balancing scheme to be effective in 
this new application environment, it must be made “ I/O-
aware” . Typical examples of I/O-intensive applications 
include long running simulations of time-dependent 
phenomena that periodically generate snapshots of their 
state [14], archiving of raw and processed remote sensing 
data [4][6], multimedia and web-based applications, to 
name just a few. These applications share a common 
feature in that their storage and computational 
requirements are extremely high. Therefore, the high 
performance of I/O-intensive applications heavily 
depends on the effective usage of storage, in addition to 
that of CPU and memory. Compounding the performance 
impact of I/O in general, and disk I/O in particular, is the 
steadily widening gap between CPU and I/O speed, 
making the load imbalance in I/O increasingly more 
crucial to overall system performance. To bridge this gap, 
I/O buffers allocated in the main memory have been 
successfully used to reduce disk I/O costs, thus improving 
the throughput of I/O systems. In this regard, load 
balancing with I/O-awareness, when appropriately 
designed, is potentially capable of boosting the utilization 
of the I/O buffer in each node, which in turn increases the 
buffer hit rate and decreases disk I/O access frequency.  

This paper evaluates a comprehensive approach, called 
Weighted Average Load balancing with Preemptive 
Migration, or WAL-PM, to balance a cluster in such a way 
that CPU, memory, and I/O resources at each node can be 
well utilized. The rest of the paper is organized as follows. 
In the section that follows, related work in the literature is 
briefly reviewed. Section 3 presents system considerations 
and an example to motivate the idea behind the proposed 
approach. In Section 4, we describe the WAL-PM scheme. 



 
 
 
 

Section 5 evaluates the performance of the WAL-PM 
scheme, and compares it with that of other existing 
solutions. Finally, Section 6 concludes the paper by 
summarizing the main contributions of this paper. 

 
2. Related work 

 
The issue of distributed load balancing for CPU and 

memory resources has been extensively studied and 
reported in the literature in recent years. Harchol-Balter et 
al. [7] proposed a CPU-based preemptive migration 
policy that was more effective than non-preemptive 
migration policies. Zhang et al. [17] focused on load 
sharing policies that consider both CPU and memory 
services among the nodes. Throughout this paper, the 
CPU-memory-based load-balancing policy presented in 
[17] will be referred to as CM-based policies. The 
experimental results show that CM-based policies not 
only improve performance of memory-intensive jobs, but 
also maintain the same load sharing quality of the CPU-
based policies for CPU-intensive jobs [17]. 

A large body of work can be found in the literature that 
addresses the issue of balancing the load of disk systems 
[2][9][12][18][19]. Scheuermann et al. [12] studied the 
issues of striping and load balancing in parallel disk 
systems. Lee et al. [9] proposed two file assignment 
algorithms that minimize the variance of the service time 
at each disk. Aerts et al. [2] used randomization and data 
redundancy to enable effective load balancing. Our 
previous work [18][19] focused on two dynamic 
scheduling algorithms to improve the read and write 
performance of a parallel file system by balancing the 
global workload. The I/O load balancing policies in these 
studies have been shown to be effective in improving 
overall system performance by fully utilizing the available 
hard drives. However, not all of them can be directly 
applied for a complex distributed environment where I/O-
intensive jobs may share resources with many other 
memory-intensive and CPU-intensive jobs.   

We have developed a feedback control mechanism to 
improve the performance of a cluster by manipulating the 
I/O buffer size [11]. The scheme presented in this paper is 
complementary to the existing buffering techniques, 
thereby providing additional performance improvement 
when combined with a feedback control mechanism. 

Very recently, three load balancing models, which 
consider I/O, CPU and memory resources, have been 
presented [10][13][16]. In [13], a dynamic load-balancing 
scheme, tailored for the specific requirements of the 
Question/Answer application, is proposed along with a 
performance analysis of the approach. The migration 
scheme studied in [13] is non-preemptive, therefore being 
referred to as WAL-RE (Weighted Average Load with 
Remote Execution). In the authors’ previous work, 
another I/O-aware load-balancing scheme, referred to as 

IOCM, is studied [10]. IOCM allows a job’s I/O 
operations to be conducted by a node that is different from 
the one in which the job’s computation is assigned, 
thereby permitting a job to access remote I/O. The result 
shows that IOCM significantly improves the slowdown 
performance over those load-balancing schemes that do 
not allow remote I/O access. The two policies proposed in 
[10][13] are similar in the sense that the policies are non-
preemptive. The new WAL-PM scheme, however, permits 
a running job to be preempted and migrated if its 
migration is expected to improve the performance.  

One of the load-balancing policies presented in [16] 
considers the three types of resources in a similar way as 
WAL-RE, and results show that the policy improves 
overall job execution performance. Besides WAL-RE, 
Zhang et al. [16] also proposed a WAL-based preemptive 
migration policy, which has worse performance than that 
of WAL-RE under memory-intensive workload. The 
reasons for this result are two-fold. First, remote 
execution has a significantly lower data movement cost 
than that of preemptive migration for jobs with high 
memory demand [16]. Second, the migration cost might 
not always be considered as a criterion to choose the 
eligible jobs for migration. Since the preemptive 
migrations in [16] are proposed for memory-intensive 
workload, data migration cost only take memory 
migration into account, thereby ignoring I/O migration 
cost as an important component of the migration cost in 
load-balancing. In contrast, the WAL-PM scheme 
proposed in this study considers both memory and I/O 
migration cost as a criterion to determine jobs that are 
eligible for migration. Trace-driven simulations show that, 
compared with the CM-based and WAL-RE policies, the 
proposed WAL-PM scheme significantly enhances the 
overall performance of a cluster system under I/O 
intensive workload. The results also show that, under 
CPU-memory-intensive workload, WAL-PM is more 
effective than IO-based polices, and sustains the same 
level of performance as the CM-based policy. 

  
3.  Problem Description 

 
We consider the problem of distributed dynamic load 

balancing among a cluster of nodes connected by a high-
speed network, where each node maintains reasonably up-
to-date global load information by periodically 
exchanging load status with other nodes. Jobs arrive at 
each node dynamically and independently, and share 
resources available there. The nodes are assumed to be 
capable of migrating a newly arrived job or a running job 
preemptively to another node if needed.  

In this study, we consider the sharing of, and scheduling 
for, three main resources, namely, CPU, main memory, 
and disk I/O.  For simplicity, we assume that all nodes are 
homogeneous, and the proposed scheme may be extended 



 
 
 
 

to handle heterogeneous systems by incorporating a 
conversion mechanism for relative load. The network in 
our model is fully connected and homogenous in the sense 
that communication delay between any pair of nodes is 
the same. 

To help describe the problem of a dynamic load-
balancing scheme in a cluster and motivate the proposed 
solution that improves on previous ones, we first present 
the following example: 

Assume a cluster with two identical nodes, where two 
jobs have been assigned to node 1 and one job has been 
assigned to node 2. The CPU, memory, and I/O resource 
requirements and execution status of each job are listed in 
Table 1. When an I/O-intensive job is migrated, load-
balancing schemes are required to move the data that 
resides in the local disk along with the migrated job, 
making the data available locally to the migrated job.  
Mig_data in Table 1 denotes the amount of data stored in 
the local disk that has to be migrated together with its job 
once the migration is initiated. The discrepancy in 
Mig_data size among the jobs might be due either to the 
variety of I/O access patterns or to the various initial data 
sizes. The I/O access rate is measured by the number of 
disk I/O accesses per unit time, assuming that each access 
involves a fixed amount of data (say, one block). This I/O 
access rate for a given job can be viewed as a measure of 
the average number of instructions between two 
consecutive disk I/O accesses. For example, if the average 
I/O service time of each I/O access is 8.0ms, then the total 
I/O service time required by job 3 will be 3200ms, 
because there will be 400 I/O accesses in job 3, which is 
significantly larger than its CPU time. This workload 
suggests that balancing I/O load is a more effective means 
of improving the system performance than balancing CPU 
or memory. Therefore, for illustrative purposes, we will 
only consider how to dynamically balance the I/O load in 
this example. 
 

    Table 1. Resource requirements of the jobs 
                and their  assignment 

 
Now consider job 4 arriving at node 1 with the resource 

demand shown in Table 1. The total I/O load in node 1 is 
9 No./ms, whereas the I/O load in node 2 is only 1 
No./ms, indicating that the system is I/O load imbalanced. 
The current imbalance might be caused by the fact that 
some jobs with high I/O demand have just been 
completed and left node 2. Since job 4 will worsen the 
imbalance of I/O load between the two nodes if it is 
assigned directly to node 1, efforts must be made to 

counterbalance the I/O load. There are two approaches to 
balance the system: 

Approach 1: Job 4 is executed on remote node 2. This 
approach is referred to as non-preemptive migration, or 
remote execution. 

Approach 2: Job 4 is executed locally at node 1, and job 
2 at node 1 is preempted and migrated to node 2. This 
approach is called preemptive migration. 

The performance of the two approaches is compared 
with respect to the following two aspects, namely, load-
balancing effect and migration cost.  

(1) Approach 1 reduces the discrepancy in I/O load 
between the two nodes from 8 No./ms to 6 No./ms, by 
adding 2 No./ms of I/O load to node 2. This leaves the 
system still imbalanced in I/O load. Approach 2, however, 
leads to a perfect I/O load balancing between the two 
nodes. This result illustrates that, in the presence of a 
variety of I/O load among jobs under I/O intensive 
workload, preemptive migration has a better ability to 
balance the I/O load than non-preemptive migration does. 

(2) In both approaches data resident in the local disk 
must be migrated to the remote disk, by first reading out 
of the local disk, then transferring through the network, 
before storing in the remote disk, thus incurring a cost of 
two disk accesses and one network transaction. Assume 
that the network bandwidth is 1Gbps, and the disk 
bandwidth is 40Mbyte/Sec. Thus, network transaction and 
disk access times for migrating data for job 4 are 937.5ms 
and 6000ms, respectively. However, the data migration 
cost for job 2 is only 39ms for network transfer and 
125ms for disk accesses. This example shows that 
Approach 2 can explore far more opportunities than 
Approach 1 for reducing I/O load imbalance at low 
migration costs by considering not only incoming jobs but 
also currently running jobs.  
 
4.  Weighted Average Load-balancing  
     with Preemptive Migration 

 
It has been observed that finding an optimal solution for 

the general problem of load-balancing in a distributed 
system, even for relatively simple formulations of this 
problem, is an NP-hard problem [5]. Consequently, the 
WAL-PM scheme, an I/O-aware load-balancing scheme 
with preemptive migration, presented here is heuristic in 
nature. The main goals of the WAL-PM scheme are to: 
 (1) balance I/O usage of all nodes in the system with best 
effort; 
(2) balance CPU and memory resources with best effort; 
and  
(3) optimize (1) and (2) by judiciously preempting 
running jobs to migrate with minimized migration costs. 

For a newly arrived job j at a node i, the WAL-PM 
scheme attempts to balance the system load in the 

Job  Node  CPU Age Memory I/O rate Mig_data 
1 1 300ms 5ms 200KB 4No./ms 30 MB 
2 1 800ms 2ms 300KB 5No./ms 5 MB 
3 2 400ms 3ms 400KB 1No./ms 15 MB 

4(New) ? 700ms 0ms 500KB 2No./ms    120 MB 



 
 
 
 

following steps. First, the load of node i is updated by 
adding job j’s load, assigning the newborn job to the local 
node. Second, if the load of node i is the maximum among 
all nodes, meaning that the node is overloaded, a 
migration is to be initiated. Third, a candidate node k, that 
has the lowest load, is chosen. The load of the candidate 
must be less than the global average load. If a candidate 
node is not available, WAL-PM will be terminated and no 
migration will be carried out. Fourth, WAL-PM 
determines a set EM of jobs eligible for migration such 
that the migration of each job in EM is able to potentially 
reduce the slowdown of the job. Fifth, a job q from EM is 
judiciously selected in such a way that the migration 
benefit is maximized. In fact, this step substantially 
improves the performance over the WAL-based scheme 
with non-preemptive migration. Finally, job q is migrated 
to the remote node k, and the load of nodes i and k is 
updated in accordance with job q’s load.  

An outline of the WAL-PM scheme is presented in 
Figure 1 below. 

 
The WAL-PM scheme answers three basic questions, 

namely, (1) when to migrate a job, (2) which job to 
migrate, and (3) to which node to migrate the selected job. 
The WAL-PM scheme deals with the first and the third 
questions in a similar approach as the WAL-RE scheme 
[10][13], as described in Steps 2 and 3. Therefore, the rest 
of the paper will focus on deciding which job to migrate, 
that is, to judiciously select an eligible job in EM from the 
overloaded node to migrate. 

The expected response time of an eligible migrant on 
the source node, by design, is greater than the sum of its 
expected response time on the destination node and the 
migration time (cost). In what follows, the expected 
response time of a candidate migrant j on node i is given 
in the following equation:  
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where aj , tj , and λj are the age, computation time, and I/O 
access rate of job j, respectively si is the I/O service time, 
and ρi is the utilization of the disk in node i. E(Li) 
represents the mean CPU queue length Li, and Λi denotes 
the aggregate I/O access rate in node i.  

The two terms on the right hand side of Equation (1) 
represent the CPU exectuion time and the I/O processing 
time, respectively. It is assumed that I/O access is 
synchronized with its CPU processing, thus, the response 
time of a job is the summation of CPU response time and 
I/O reponse time. Round-robin scheduling (time-sharing) 
is employed as the CPU scheduling policy, and the disk of 
each node is modeled as a single M/G/1 queue [9]. The 
aggregate I/O access rate, Λi, is defined as: 
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In Equation (2), Mi is a set containing all the jobs that 

are assigned to node i, and λk′ is the effective I/O access 
rate imposed on the disk by job k, taking the effect of 
time-sharing into account. To accurately estimate the 
effective I/O access rate, λk, measured in a non-shared 
environment, must be deflated by the time-sharing factor, 
which is E(Li). Based on λk′, the disk utilization can be 
expressed as: �

∈

′=
iMk

kki sλρ .  

 Let pk
IO be the probability of an I/O access being from 

job k on node i, we then have pk
IO = λk′/Λi. Therefore, the 

mean I/O service time, used in Equation (1), can be 
calculated as follows: 
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Let pk

CPU denote the probability of a job k being 
executed by CPU or waiting in the CPU queue, as 
opposed to waiting for I/O access. We have 

)1/(1)/( kkkkkkk
CPU
k sstttp λλ +=+= . Thus, the mean CPU 

queue length, used in Equation (1) and (2), becomes: 
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Based on Equation (1), the set of eligible migrant jobs 

becomes: 
 

WAL-PM(Input: Job j, Node i)  
1. Assign job j to node i, and add the load of job j into the 

load of node i;           
2. if the weighted average load index indicates that node i is 

overloaded then   
3.    Select a node k with the smallest value of load; 
       if a candidate node is not available then  
             Preemptive migration is terminated 
4.    Determine a set of jobs EM(i, k), in which jobs have    
          been assigned to node i and are eligible for migration;   
5.    if the set EM is not empty then 
              Select a job q in EM(i, k) that gains a maximal  
                    benefit from migration; 
              Migrate job q from node i to node k;    

Figure 1. Pseudo code of the Weighted-Average-
Load based policy with Preemptive  Migration. 
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where k represents a destination node, and cj is the 
migration time of job j. In other words, each eligible 
migrant’s expected response time on the source node is 
greater than the sum of  its expected response time on the 
destination node and the expected migration cost, which is 
modeled as follows, 
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where e and f are assumed to be the fixed costs for remote 
execution and preemptive migration, respectively. bnet and 
bdisk denote the network bandwidth and disk bandwidth, 
respectively. dj

INIT represents the amount of data that the 
job initially accessed, and this amount of data is referred 
to as initial data throughout this paper. Thus the last two 
terms of the upper line of Equation (6) represent the 
migration time spent on transmitting data over the 
network and on accessing source and destination disks, 
respectively. dj

W and mj denote, respectively, the amount 
of disk (I/O) data and of main memory data generated at 
the runtime by the job. Similar to the upper line of 
Equation (6), the last three terms of the lower line of 
Equation (6) represent the migration time spent over the 
network on transmitting memory data and disk data, and 
on accessing the source and destination disks for the 
migrated disk data. Disk data dj

W is proportional to the 
number of write operations that have been issued by the 
job at the runtime and the average amount of data dj

RW 
stored by the write operations. dj

W is inversely 
proportional to the data re-access rate r j, defined to be the 
number of times the same data is accessed by the job. 
Thus, dj

W is defined by the following equation, 
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where wj is the percentage of I/O operations that store 
data to the local disk, and the number of write operations 
is a product of aj, λj, and wj in the numerator. 

In Step (5), WAL-PM chooses one job j from set EM(i, 
k) (Equation 5) in such a way that the benefit of migration 
is maximized. To find a maximizing factor, we define an 
objective function, called the migration cost-effectiveness 
(MCE), which measures the amount of I/O load migrated 
per unit migration cost. More specifically, for job j, 

jjj cajMCE /)()( λ×= , since the numerator represents the 

I/O load of job j while the denominator indicates 

migration cost of the job. Thus, the best job in EM to 
choose for migration is the one with the maximum MCE 
value, as shown in Equation (8),  
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Besides selecting an appropriate migrant in Step (5), 

WAL-PM estimates the weighted average load index in 
Step (1). Since there are three primary resources 
considered in a cluster, the load index of each node i is the 
weighted average of CPU, memory and I/O load, thus: 
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where loadCPU(i), loadMEM(i), and loadIO(i) are individual 
load indices for CPU, memory and I/O resources, 
respectively. The weight of each resource implies the 
significance of the resource and the feature of workload. 
For example, in an I/O-intensive workload where disk I/O 
processing dominates the overall performance of a cluster, 
WIO, WCPU, and WMEM, can be configured to 1, 0 and 0, 
respectively. Therefore, WAL-PM, under the I/O-intensive 
workload, only attempts to balance I/O resources, 
ignoring CPU and memory resources. 

The three load indices for the workload of CPU, 
memory and I/O are described below:  

(1) The CPU load index of node i is characterized by the 
length of the CPU waiting queue [16][17], denoted as 
loadCPU(i). 

(2) The memory load index of node i, denoted as 
loadmem(i), is the sum of the memory space allocated to 
those jobs with their computational tasks assigned to node 
i. More precisely, let lmem(j) represent the memory load  
(requirement) of job j, then 
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(3) The I/O load index measures two types of I/O 

accesses, namely, the implicit I/O requests induced by 
page faults and the explicit I/O requests resulting from the 
I/O tasks. Let lpage(i, j) denote the implicit I/O load, and 
lIO(i, j) the explicit I/O load, then, the I/O load index of 
node i can be defined as: 
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Although it is straightforward to compute CPU load and 

memory load, the calculation of I/O load is more 
complicated because of the need to determine the implicit 
and the explicit I/O load. 

Let rmem(j) denote the memory space requested by job j, 
and nmem(i) represent the memory space in bytes that is 
available to the job on node i. When the node’s available 



 
 
 
 

memory space is larger than or equal to the memory 
demand, there is no implicit I/O load imposed on the disk. 
Conversely, when the memory space of a node is unable 
to meet the memory requirements of the jobs, the node 
encounters a large number of page faults, leading to a 
high implicit I/O load. Implicit I/O load depends on three 
factors, namely, the available user memory space, the 
page fault rate, and the memory space requested by the 
jobs assigned to node i. More precisely, lpage(i, j) can be 
defined as follows [16][17], where µi denotes the page 
fault rate of the node. 
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lIO(i, j) is proportional to I/O access rate and inversely 

proportional to I/O buffer hit rate h(i, j). Therefore, lIO(i, j) 
is approximated by the following expression:  
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The hit rate of I/O access for job j running on node i is 

approximated by the following formula: 
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where dbuf(i, j) is the buffer size allocated to job j, and 
ddata(j) is the amount of data job j retrieves from or stored 
to the disk, given a buffer with infinite size. I/O buffer in 
a node is a resource shared by multiple jobs in the node, 
and the buffer size a job can obtain in node i at run time 
heavily depends on the jobs’ access patterns, characterized 
by I/O access rate and average data size of I/O accesses. 
ddata(j) linearly depends on access rate, computation time 
and average data size of I/O accesses dj

RW, and ddata(j) is 
inversely proportional to I/O re-access rate. dbuf(i, j) and 
ddata(j) are estimated using the following two equations: 
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5. Performance evaluation 

 

To study the performance of the I/O-aware dynamic 
load-balancing scheme presented above, we have 
performed a large number of trace-driven simulations. In 
this section, we compare the performance of WAL-PM 
with the existing schemes, namely, IO-based, CM-based, 
and WAL-RE. In what follows we give a brief description 
of these three policies.  

(1) IO-based load balancing. The load index in this 
policy represents only the I/O load, given in expression 
(11). For a job arriving in node i, the IO scheme greedily 
assigns the computational and I/O tasks of the job to the 
node that has the least accumulated I/O load.  

(2) CPU-Memory-based load balancing [16]. When a 
node i has sufficient memory space, the CM scheme 
balances the system using CPU load index, loadCPU(i), as 
defined in Section 4. When the system encounters a large 
number of page faults due to insufficient memory space 
for the running jobs, memory load index, loadmem(i), given 
in expression (10), is used by CM to balance the system. 

(3) Weighted-Average-Load-based balancing (WAL-RE) 
[12]. For every node I, the load index defined in WAL is 
the weighted average of the required resource load: 

     )()()( iloadWiloadWiload CPUCPUIOIO ×+×= .    (17) 

For a new coming job j, WAL assigns it to a node that is 
not overloaded. If such a node is not available, WAL 
dispatches the job to a node with the smallest value of the 
load index. In our experiments, both WIO and WCPU are set 
to 0.5, assuming that I/O and CPU are equally important 
in the workload. 

The performance metric used in our simulations is 
slowdown [7][16], since jobs may be delayed because of 
waiting in queues or being migrated to remote nodes. 
Since the definition of slowdown in [7][16] does not 
consider time spent on I/O access, we extend the 
definition by incorporating I/O access time. The extended 
definition of slowdown for a job j is given as: 

 
    

)(_)(_

)(_
)(

jtimeIOjtimeCPU

jtimewall
jslowdown

+
= ,     (18) 

 
where wall_time(j) is the total time the job spends 
running, accessing I/O, waiting, or migrating. 
 
5.1 Simulator and Simulation Parameters 

 
Before presenting the empirical results, the simulation 

model and the workload are discussed.  
To study dynamic load balancing, Harchol-Balter and 

Downey [7] implemented a simulator of a distributed 
system with 6 nodes, in which round-robin scheduling is 
employed. The load balancing policy studied in this 
simulator is CPU-based. Zhang et. al [16] extended the 
simulator, incorporating memory resources into the 



 
 
 
 

simulation system. Based on the simulator, presented in 
[16], our simulator incorporates the following four new 
features: 

(1) The WAL-PM, WAL-RE, and IO-based schemes are 
implemented in the simulator; 

(2) A fully connected network is simulated; 
(3) A simple disk model is added into the simulator; 
(4) I/O buffer, used to reduce the disk I/O access 

frequency, is implemented on top of the disk model.   
In all experiments, we used the simulated system with 

the configuration parameters listed in Table 1. The 
parameters for CPU, memory, disks, and network are 
chosen in such a way that they resemble a typical cluster 
of the current day.  

Table 1. Data Characteristics 

 Parameter Values assumed 
CPU Speed 800(million instructions/second) 
RAM Size 640Mbytes 
Buffer Size 160Mbytes 
Network Bandwidth 1Gbps, 100Mbps,10Mbps 
Page fault service time 8.1 ms 
Page fault rate 0.1, 1.0, 2.0 per ms 
Time slice of CPU  10 ms 
Context switch time 0.1 ms 
seek and rotation time 8.0 ms 
Disk transfer rate 40 MB/s 
I/O access rate 0.1, 0.2, …, 2.9 
 

Disk accesses from each job are modeled as a Poisson 
process with a mean arrival rate λ. The service time of 
each I/O access is modeled as below:  

 
I/O_Service_time = Seek_time + Rotational_delay  
                               + Ttransfer_time,                       (19) 

             
rateTransfer

sizeData
timeTransfer

_

_
_ = ,                   (20) 

 
where Seek_time is the disk arm positioning time for a 
disk head move to the desired cylinder, Rotational_delay 
is the time for the desired block to rotate under the disk 
head, and Transfer_time is the time to read/write data in 
the block. Transfer_time equals the amount of data 
retrieved from or stored to the disk divided by the transfer 
rate. We assume that both Seek_time and Rotational_delay 
are fixed, and the transfer time for each I/O access is 
computed by expression (20). Data sizes of the I/O 
requests are randomly generated based on a Gamma 
distribution, since the sizes chosen in this way reflect 
typical data characteristics for MPEG-1 data [3], which is 
retrieved by many multimedia applications. The data 
characteristic for the I/O requests in our simulation is 
given in Table 2. 

Table 2. Data Characteristics 

Data Size Mean  100 Kbyte 
Gamma Distribution Standard Deviation  50 Kbyte 

We modified the traces used in [7][16], adding a 
randomly generated I/O access rate to each job. In the 
traces used in our experiments, the CPU and memory 
demands remain unchanged, and the memory demand of 
each job is chosen based on a Pareto distribution with the 
mean size of 4Mbytes [16].  

 
5.2 I/O-Intensive Workload 

 
To stress the I/O-intensive workload in this experiment, 

the page fault rate is fixed at a very low value of 
0.5No./ms, implying that, even when the requested 
memory space is larger than the allocated memory space, 
page faults do not occur frequently. This workload reflects 
a scenario where memory-intensive jobs exhibit high 
temporal and spatial locality of access. Since the 
workload of this experiment is highly I/O-intensive and 
thus heavily biased to I/O resources, the weights of the 
three load indices, WCPU, WMEM, and WIO, are fixed to 0, 0 
and 1, respectively. This configuration assumes that I/O 
resources are more important than CPU and memory in an 
I/O intensive workload. Figure 2 plots slowdown as a 
function of the maximal I/O access rate in the range 
between 2.4 No./ms and 2.9 No./ms with increments of 
0.1 No./ms. The mean slowdowns of IO_RE and IO_PM 
are almost identical to those of WAL-RE and WAL-PM, 
respectively, and therefore are omitted from Figure 2.  

 
The slowdown of CM-RE is also omitted from Figure 2, 

since its performance is almost the same as that of CM-
PM. This is because, when the page fault rate is low, there 
is little incentive for CPU-Memory-based (CM-based) 
policies have to migrate jobs, whether preemptive or not, 
making CM-RE and CM-PM equally unlikely to improve 
the overall system performance any further. 

Figure 2. Mean slowdown as a function of 
the I/O access rate, on a trace with a page 
fault rate of 0.5 No./ms  
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Figure 2 reveals that the mean slowdowns of the three 
policies all increase with the I/O load. This is because, as 
CPU load and memory demands are fixed, high I/O load 
leads to a high utilization of disks, causing longer waiting 
time on I/O processing.  

The results further show that the WAL-RE scheme 
significantly outperforms the CM-RE and CM-PM 
policies, suggesting that the CM-based policies are not 
suitable for I/O intensive workload. For example, as 
shown in Figure 2, WAL-RE reduces the mean slowdown 
by up to a factor of 2 (with an average of 112%). This is 
because CM-based policies only balance CPU and 
memory load, ignoring the imbalanced I/O load of 
clusters under the I/O intensive workload. 

More interestingly, the proposed WAL-PM policy 
improves the performance even over WAL-RE by virtue 
of preemptive job migrations. For example, WAL-PM 
reduces the slowdown of WAL-RE by up to a factor of 10 
(with an average of 353%), and WAL-PM improves the 
performance in terms of slowdown over both CM-RE and 
CM-PM by up to a factor of 20. Consequently, the 
slowdowns of CM-based policies and WAL-RE are more 
sensitive to I/O access rate than WAL-PM does. This 
performance improvement of WAL-PM over WAL-RE 
can be explained by the following reasons. First, one 
problem encountered in the WAL-RE policy is that the 
I/O demand of a newly arrived job may not be high 
enough to offset the migration overhead, leading the 
node’s I/O load to accumulate. However, WAL-PM 
considers all existing jobs on a node, in addition to the 
newly arrived job. Therefore, WAL-PM can find more 
(“optimal” ) migration opportunities than WAL-RE. 
Second, in the non-preemptive scheme, once a job with 
high I/O demand misses the opportunity to migrate it will 
never have a second chance even if it soon becomes one 
of the best candidate migrants due to the load dynamics. 
Third, even when the net performance gain is insignificant 
and such migration consumes network resources, the non-
preemptive migration policies might still have a newly 
arrived job with low I/O requirement migrated to a remote 
node.  

 
5.3 CPU-Memory Intensive Workload 

 
If Section 5.2 presented a best case scenario for the 

proposed WAL-PM scheme since the workload there was 
highly I/O-intensive, then this section shows the opposite, 
a worst case scenario for WAL-PM, namely, subjecting it 
to a highly CPU-memory-intensive workload. To simulate 
a memory intensive workload, the I/O access rate is fixed 
at a low value of 0.1 No./ms, keeping the I/O demands of 
all jobs at a low level. The results of the mean slowdown 
as a function of the page fault rate are summarized in 
Figure 3. The page fault rate is set from 7.2No./ms to 
8.8No./ms with increments of 0.2No./ms. For the WAL-

based policies, WCPU, WMEM, and WIO are fixed to 0.1, 0.9 
and 0, respectively. 

 
The slowdowns of the CM-based schemes are omitted 

from Figure 3, since their performance of is nearly 
identical to that of the WAL-based schemes. The reason 
for this is that WAL-RE and WAL-PM judiciously adjust 
the weighted load index to meet the demands of CPU-
memory intensive workload. If the weighted load index is 
wisely configured in accordance with the CPU-memory 
intensive workload, the WAL-RE and WAL-PM policies 
gracefully reduce to CM-RE and CM-PM, respectively.  

 

 
When the page fault rate is higher and the I/O rate is 

low, WAL-RE and WAL-PM outperform the IO_RE and 
IO_PM considerably. For example, the WAL-based 
policies reduce the slowdowns over the IO-based policies 
by up to 40.4% (with an average of 30.4%). The reason 
for this result is that IO-based policies only attempt to 
balance explicit I/O load, ignoring the implicit I/O load 
resulted from page faults. When the page fault rate is high 
and the explicit I/O load is low, balancing explicit I/O 
load does not make a significant contribution to balancing 
the overall system load. 
 
6. Conclusions 

 
In this paper, we have proposed a dynamic load 

balancing policy, referred to as WAL-PM (Weighted-
Average-Load based policy with Preemptive Migration), 
for cluster systems executing applications that represent 
general and practical workload including intensive I/O 
activities. WAL-PM considers I/O load, in addition to 
CPU and memory utilizations. It boosts the performance 
of both I/O-aware and CPU-Memory-aware load-
balancing schemes under I/O-intensive workload, by 

Figure 3. Mean slowdown as a function of 
the page fault rate, on the trace with an
I/O access rate of 0.1 No./ms 
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considering not only the newly arrived jobs but also older, 
running jobs as candidate migrant jobs, and by migrating 
jobs that are the most migration cost-effective.  

To evaluate the performance of WAL-PM, we compare 
it with four existing approaches, namely, (1) CPU-
Memory-based policy with preemptive migration (CM-
PM), (2) CPU-Memory-based policy with non-preemptive 
migration (CM-RE), (3) IO-based policy with non-
preemptive migration (IO_RE), and (4) Weighted-
Average-load based policy with non-preemptive migration 
(WAL-RE). For comparison purposes, IO-based policy 
with preemptive migration (IO_PM) is also simulated and 
compared with WAL-PM. WAL-PM is more general than 
the other five approaches, and is able to maintain a high 
performance under a diverse range of workload 
conditions. A trace-driven simulation provides extensive 
empirical results demonstrating that dynamic load 
balancing with preemptive job migrations under I/O-
intensive workload is not only necessary but also highly 
effective. In particular, the proposed scheme improves the 
performance over the existing non-preemptive I/O-aware 
schemes by up to a factor of 10 (with an average of 
353%). On the other hand, it outperforms the existing 
CPU-Memory-based schemes by up to a factor of 20 
(with an average of 398%) when the workload is I/O 
intensive.  
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