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Energy consumption of energy-constrained nodes in wireless sensor networks (WSNs) is a fatal weakness of these networks. Since
these nodes usually operate on batteries, the maximum utility of the network is dependent upon the optimal energy usage of these
nodes. However, new emerging optimal energy consumption algorithms, protocols, and system designs require an evaluation
platform. This necessitates modeling techniques that can quickly and accurately evaluate their behavior and identify strengths and
weakness. We propose Petri nets as this ideal platform. We demonstrate Petri net models of wireless sensor nodes that incorporate
the complex interactions between the processing and communication components of an WSN. These models include the use of
both an open and closed workload generators. Experimental results and analysis show that the use of Petri nets is more accurate
than the use of Markov models and programmed simulations. Furthermore, Petri net models are extremely easier to construct and
test than either. This paper demonstrates that Petri net models provide an effective platform for studying emerging energy-saving
strategies in WSNs.

1. Introduction and Motivations

Application for wireless sensor networks (WSNs) has
abounded since their introduction in early 2000. WSNs are
being used from surveillance, environmental monitoring,
inventory tracking, and localization. A sensor network typi-
cally comprises of individual nodes operating with some
limited computation and communication capabilities, and
powered by batteries with limited energy supply. Further-
more, these networks are situated at a location where they
may not be easily accessible. Their distributed nature, small
footprint, cheap, and wireless characteristics make them very
attractive for these outdoor, unattended, and hostile environ-
ment applications.

One of the motivating visions of WSNs was large-scale
remote sensing such as large areas of a rainforest for environ-
mental parameters such as humidity and temperature.
However, given the remoteness of such a site, this can be
a challenging problem. Modern WSNs were proposed for
solving such problems, and it was envisioned that these WSN
nodes could be sprinkled over an area from the back of an

airplane as it flew over such an area. The nodes wherever they
fell would automatically set up an ad hoc network, collect the
necessary sensory information, and route the information
to a base-station. Although great strides have been made
in WSN designs and implementation, we are nowhere near
meeting this original motivating problem.

One reason why this original problem has been difficult
to solve is that WSNs are still relatively expensive in large
quantities. However, the much larger problem is the limited
energy available on these devices. The utility of WSNs is
limited to the life of the battery under the energy consump-
tion rates. While energy harvesting in WSNs is an active
research area [1], generally this is not feasible yet for entirely
sourcing the energy needs of an WSN. WSNs are still very
much bound to batteries.

An avenue for mitigating this energy dilemma is through
the design of energy-efficient communication and active/
sleep scheduling algorithms. In this way, a vital resource can
be rationed to last a much longer time. This minimizes the
overall maintenance and replacement costs of a WSN net-
work. However, proposing energy-efficient designs requires
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a detailed understanding of the energy consumption behav-
ior of the nodes which comprise WSNs. This detailed under-
standing arises from accurate implementation of models for
these nodes and analyzing these models under a variety of
different states.

For example, many processors are available today that
are capable of moving to a sleep mode where they consume
minimal energy. However, should a processor be put to
sleep immediately after computation, or after some time has
elapsed? Or even, perhaps it should never be put to sleep? If it
is best to move the processor to sleep after a time delay, what
should this delay or Power Down Threshold be for a given
system? Keep in mind, there is a high energy cost associated
with waking up a processor from a sleep mode due to the
internal capacitances. If the threshold is too short, then the
CPU goes to sleep more often, and there is a stiff price to
be paid each time the CPU needs to be woken up. If the
threshold is too long, the CPU idles consuming energy waste-
fully. Nevertheless, there is an optimum threshold that results
in the least amount of energy consumption that strikes an
optimum balance between putting the CPU to sleep and
maintaining it in an active mode. This threshold can also be
referred to as break-even time [2].

Another example of emerging technology that can be
exploited in wireless sensor networks is the use of processors
that have dynamic voltage scaling capabilities. In these pro-
cessors, the voltage and clock frequency can be dynamically
adjusted to obtain a minimum clock frequency to complete
the task while using minimal energy [3, 4]. Currently the two
types of DVS systems available are those that stop execution
while changing voltage and frequency and those that are
capable of changing its operating parameters at run time [5,
6]. However, in order to begin investigating energy optimiza-
tion techniques, such as answering the questions given ear-
lier, we need to devise models that can be used to accurately
compute the energy consumption of a wireless sensor node.
This need motivates the research presented in this paper.

Currently, there are two classes of modeling and simu-
lating techniques: stochastic and simulation-based methods.
Each has its strengths and weaknesses. We propose another
method of modeling that has not been used in the past to
model WSNs: Petri nets. This paper studies two methods of
energy modeling: Markov chains, and Petri nets [7, 8]. These
modeling techniques will be compared against a program-
med simulation model. This paper makes the following con-
tributions.

(i) We successfully model a processor using a Markov
model based on supplementary variables; we also
model a processor using colored Petri nets. These
models are capable of estimating the average energy
consumption of a processor that can power down to
a sleep mode. While Markov models have long been
used for modeling systems, we show that for estimat-
ing CPU energy consumption, the Petri net is more
flexible and accurate than the Markov model.

(ii) Using Petri nets, we develop a model of a wireless
sensor node that can accurately estimate the energy
consumption. We successfully apply this model to
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Figure 1: Example of Petri net.

identify the optimum powering down threshold for
a given wireless sensor network application.

(iii) Our model of a sensor node based on Petri net can be
utilized to construct a wireless sensor network. This
provides a platform that can be used to study energy
consumption at the network layer for application
such as cross-layer energy-aware routing.

The paper is organized as follows. Section 2 gives a short
introduction to Markov models and Petri nets and discusses
related work. Section 3 presents the CPU energy models and
Section 4 validates the CPU models. Section 6 presents the
model for a wireless sensor node and Section 4 uses this
model to study the energy optimal Power Down Threshold.
Section 8 introduces the use of Petri nets in modeling wireless
sensor networks. Section 9 concludes this paper.

2. Background and Related Work

2.1. Introduction to Markov Models and Petri Nets. Tradition-
ally, Markov models have been used; however, they are very
restrictive in the type of behaviors that can be modeled.
A Markov model is a discrete-time stochastic process com-
posed of event chains with Markov property, meaning that
the next state in a Markov model is only dependent upon the
current state instead of previous ones.

The advantage of using Markov chains for modeling sys-
tems is that once the appropriate equations are derived, the
average behavior can be easily obtained by evaluating the
appropriate equations. However, the task of obtaining the
equations relevant to the system can be time-consuming, if
not impossible.

Petri nets, on the other hand, are very powerful tools
that can be utilized to build statistical models of complicated
systems that would otherwise be very difficult. Petri nets is
a simulation-based approach for modeling. A Petri net is
a directed graph of nodes with arcs. Nodes are referred to
as places and are connected to transitions with arcs. In this
paper, arcs will be drawn as directed arrows.

An example of a simple Petri net is shown in Figure 1
that contains two places P1 and P0, and a transition T0. The
input place of T0 is P0, and the output place of T0 is P1. T0 is
enabled only if P0 contains as many tokens as specified by
the arc. In this example, T0 is enabled because it requires
only one token in P0. Once a transition is enabled, it will
fire according to a specified timing parameter. During the
process of firing, a transition will remove a number of tokens,
as specified by the arc, from the input place and deposit these
tokens in the output place. If an immediate transition is used,
the transition will fire as soon as it is enabled. Deterministic
transitions fire if some predetermined time has passed after
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it has been enabled, and exponential transitions fire if some
random time in some time interval has passed. A Petri net
can be used to model the behavior of a system utilizing this
flow of tokens to represent movement of control through the
different processes of the system. Statistical analysis of the
number of tokens in a specific place or the number of parti-
cular transitions can provide insights into the behavior of the
modeled system. Many software packages are available that
can be used to design and perform analysis upon Petri nets.
The software that will be used in this study is TimeNET 4.0
[9].

TimeNET 4.0 [9], written in JAVA, is a discrete event
simulator of Petri nets. A standalone GUI program called
Platform Independent Editor for Net Graphs (PENG) is used
to build the Petri net model. The model is translated to a
XML schema file which describes all the places, transitions,
tokens, and arcs. Thereafter, an executable is generated to
simulate the model. Depending on the model implemented
in TimeNET, different solution techniques are applied. For
example, TimeNET can compute the steady-state solutions
for Petri nets with mutually exclusive nonexponential firing
parameters. However, for models that result in more than
one deterministic transition becoming enabled at a time,
appropriate techniques are applied to maintain statistical
steady-state accuracy as the model is simulated over an
extended time.

2.2. Related Work. Many techniques have been proposed
for modeling embedded systems and minimizing the energy
consumption. As discussed earlier, existing method includes
stochastic Markov models and programmed simulation
methods. There are many proposed methods based on
Markov models [1, 10]. In [11], Markov models are used to
model active and sleep capabilities of a node and the resulting
energy and performance characteristics. Steady-state prob-
ability equations are derived that describe the number of
packets that must be serviced in different modes of opera-
tion.

Another proposed method [12] employs a stochastic
queueing model to develop a cross-layer framework. This
framework is utilized to find the distribution of energy con-
sumption for nodes for a given time period. When the
time period is long, it is demonstrated that the distribution
approaches a normal distribution. This information is then
used to predict node and network lifetime. This framework is
also used to identify relationships between energy consump-
tion and network characteristics such as network density,
duty cycle, and traffic throughput.

Jung et al. in [13] proposed the use of Markov models
to model nodes in a wireless sensor network. However,
Jung’s focus was on identifying the power consumption rates
between trigger-driven and schedule-driven modes of opera-
tion and, as a result, the lifetimes of node using these meth-
ods. We feel that the use of Markov models is cumbersome
and results in limitation of the model due to the inability of
Markov models to account for fixed constant arrival or ser-
vice rates.

Coleri et al. [14] have demonstrated the use of a Hybrid
Automata to model TinyOS and hence the resulting power

consumption of the nodes. Coleri was able to analyze the
nodes in the network on a much wider scale than what is pre-
sented in this paper. By utilizing the TinyOS framework, an
Automata model was constructed that resulted in the ability
to analyze power dissipation of a node based on its location
in the sensor network. Finite Automata have also been used
in [15].

Liu and Chou [2] present a model based on tasks, con-
straints, and schedules. Energy minimization is proposed
through the use of scheduling for DVS processors capable of
executing at different modes. Other works include [16, 17].

One of most common methods of modeling is through
the use of programmed simulation using tools such as NS2,
OMNet++, OPNET, and TOSSIM. Each of these tools have
their strengths and weakness as described in [18].

In [19], the author propose the use of Petri nets for
modeling the behavior and characteristics of WSN nodes
in what they define as intelligent wireless sensor networks
(IWSNs). Their Petri net models can be used to simulate the
actual applications, and they present results of a target track-
ing system prototype that they implement using a Petri net
tool called integrated net analyzer (INA).

We have not found any literature that discusses the use
of Petri nets for modeling energy consumption of nodes in a
wireless sensor network [7, 8]. We attempt to view the min-
imization of energy from a systems standpoint rather than
just focus on the CPU. Because the CPU is intricately associ-
ated with the system, all the other parameters of the system
affect the energy consumption associated with the CPU.

3. Evaluation of a CPU with a Markov Model and
Petri Net

Intrinsically, embedded systems operating in a wireless
sensor network offer great potential for power minimization.
Generally, the level of computation required is low and
usually interspersed with communication between other
nodes in the network. The power consumption of the CPU
can be minimized by moving to a low power mode and con-
serving energy when it is not directly involved in any com-
putation.

3.1. Open versus Close Workload Model. There are two types
of workload generators that are widely used for generating
jobs for a simulation. Both are used quite frequently depend-
ing upon the application. One is called the closed workload
generator and the other is called the open workload gener-
ator. In a closed workload generator, a new job cannot be
generated until the system has completed servicing the cur-
rent job. This can be used to model schedule-driven systems
that poll at given intervals for task requests. Since jobs are not
generated until the current job is processed, this workload
model is easy to implement and analyze. In open workload
generators, on the other hand, jobs arrive independent of the
state of the system. These can be used to model trigger-driven
systems that service requests when an interrupt occurs. How-
ever, since jobs can arrive at any time, a buffer needs to be
implemented to store those requests that arrive while the sys-
tem is busy with another request. This workload model can
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be more difficult to implement and analyze. Figure 2 depicts
both closed and open workload generators.

3.2. Modeling Energy Consumption of a CPU Using a Markov
Model. An example of a Markov model of a CPU is given in
Figure 3. The CPU “power-ups” (pu) from some low power
“standby” mode (ps) when jobs begin arriving. The Markov
model depicts the various increasing states (p01, p02, p03, etc.)
the CPU enters as the number of jobs increase under a given
job arrival rate λ. The CPU services the jobs at rate μ and
strives to move the CPU to lower states and eventually to
the “idle state” (pi). If the processor remains in the idle state
for some time interval greater than some threshold, the CPU
moves back to the “standby” (ps) state.

In this example, the following assumptions are made.

(1) The request arrivals follow a Poisson process with
mean rate λ.

(2) The service time is exponentially distributed with
mean 1/μ.

(3) The CPU enters the standby mode (state ps) if there
are no more jobs to be serviced for a time interval
longer than T .

(4) The power up process (state pu) takes a constant time
D.

The CPU model consists of a mix of deterministic and
exponential transitions. While all transitions shown as solid
lines in Figure 3 follow exponential time distributions, the
transitions shown as dashed lines are deterministic. This
includes the transition from the idle state to the standby state.

The CPU enters the standby state after idling for a constant
time threshold T . This power down transition depends on
its history and is not memoryless. Accordingly, the CPU
transitions cannot be modeled directly as a Markov process.
Using the method of supplementary variables proposed in
[20], we can derive an alterative set of state equations to
approximate the transitions for stationary analysis. Let X =
[x1, x2] denote two age variables representing how long a
deterministic transition has become enabled [21]. And let
Pi(x1) and Pu(x2) be the age density functions with respect
to x1 in the idle state and with respect to x2 in the power up
state, respectively.

The state equations for this mixed transition process can
be derived by the inclusion of two supplementary variables
X . The deterministic transition from the idle state to the
standby state can be modeled as below:

pi =
∫ T

0
Pi(x1)dx1,

d

dx1
Pi(x1) = −λPi(x1),

Pi(0) = μp01,

Pi(T) = λps,

(1)

where Pi is an exponential function with coefficient λ (pi is
the steady-state probability of being in the idle state).

The deterministic power up process can be modeled as
below:

pu =
∫ D

0
Pu (x2)dx2,

d

dx2
Pu(x2) = −λPu(x2),

(2)

Pu(0) = λps. (3)

In addition, when the system is stable, we have
(
λ + μ

)
p01 = λpi + μp02 + e−λDPu(0), (4)

(
λ + μ

)
p0n = λp0,n−1 + μp0,n+1

+ e−λD
(λD)n−1

(n− 1)!
Pu(0) for n ≥ 2,

(5)

1 =
∞∑
n=1

p0,n + pi + ps + pu. (6)

From (1), we can get

p01 = λ

μ
eλT ps,

pi =
(
eλT − 1

)
ps.

(7)

From (2), and (3), we have

pu =
(

1− e−λD
)
ps. (8)
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We define the generating function of p0,n (n = 1, 2, . . .) as

G0(z) =
∞∑
n=1

p0,nz
n. (9)

We multiply (4) by z and (5) by zn, add from n = 1 to∞,
use (3), (7), and (9), and get

G0(z) = λzps
μ− λz

(
eλT +

eλD(z−1) − 1
z − 1

z

)
. (10)

Thus, we get

G0(1) = λps
μ− λ

(
eλT + λD

)
. (11)

Substituting (7), (8), (9), and (11) into the normalization
equation (6) gives

ps = 1− ρ

eλT +
(
1− ρ

)
(1− e−λD) + ρλD

, (12)

where ρ = λ/μ.
Consequently,

pi =
(
1− ρ

)(
eλT − 1

)

eλT +
(
1− ρ

)
(1− e−λD) + ρλD

,

pu =
(
1− ρ

)(
1− e−λD

)

eλT +
(
1− ρ

)
(1− e−λD) + ρλD

.

(13)

And the utilization is

G0(1) =
ρ
(
eλT + λD

)

eλT +
(
1− ρ

)
(1− e−λD) + ρλD

. (14)

Let L(z) =∑∞
n=1 np0n zn, then L(1) is the total number of

jobs in the system:

L(z) =
∞∑
n=1

np0n zn

= z
d

dz

⎛
⎝ ∞∑
n=1

P0n zn

⎞
⎠

= z
d

dz
G0(z).

(15)

Incorporating (10) into (15), we can get the total number of
jobs in the system as follows:

L(1) = ρ

1− ρ

eλT + (1/2)
(
1− ρ

)
λ2D2 +

(
2− ρ

)
λD

eλT +
(
1− ρ

)
(1− e−λD) + ρλD

. (16)

According to the Little’s Law, the average latency for each job
is

τ = L(1)
λ

. (17)

Thus, the total running time is

T = N

λ
+ L(1)τ

= N + L(1)2

λ
,

(18)

where N is the total number of jobs.
And the total energy consumption is

E =
(
piPidle + psPstandby + puPpowerup + G0(1)Pactive

)

× N + L(1)2

λ
,

(19)

where Pidle, Pstandby , Ppowerup, and Pactive are the power
consumption rate in the idle, standby, power up, and active
states, respectively; pi, pspu, and G0(1) are the probability
that the system stays in the corresponding state.

3.3. CPU Energy Modeling Using a Petri Net. As shown in
the last section, the development of a Markov model for
even a simple CPU is mathematically cumbersome especially
when dealing with deterministic transitions. Any slight
modifications to the model will entail that the equations be
rederived again. Petri net on the other hand offers a more
flexible approach.

Figure 4 shows an open model of an extended determin-
istic and stochastic Petri net (EDSPN) [22] modeling a min-
imizing power consumption system for a processor like the
Markov model described earlier. The Petri net models a CPU
that starts from some “stand by” state (Stand By) and moves
to an “on” state (CPU ON) when jobs are generated. The
CPU remains in the “on” state so long as there are jobs in the
CPU buffer. If there are no jobs in the CPU buffer for some
time interval as given by Power Down Delay, the CPU then
moves to the “stand by” mode (Stand By) to conserve power.

This model uses an open workload generator because
when transition T1 fires to deposit a task in the CPU Buffer,
a token is moved back to place P0 which enables transition
Arrival Rate and allows another task to be generated. Table 1
lists the parameters of all the transitions in the Petri net.
The names of the transitions in Figure 4 are listed in the
first column, followed by the type of transition. Transitions
that have a specified time parameter are listed in the “Delay”
column. The last column indicates the priority of a transition
in the event that there is a tie. Transitions with higher priority
fire before other transitions.

The CPU is simulated by executing the Petri net using the
following steps.

(1) Jobs are generated in place P1, when transition
Arrival Rate fires randomly in the interval [0, 1] using
an exponential distribution. A token in the place P0
is moved to P1 and enables T1.

(2) Transition T1 is an immediate transition and fires as
soon as it is enabled. Also since T1 has the highest
priority, it will fire before any other immediate tran-
sition if multiple immediate transitions are enabled
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Figure 4: Petri net model of CPU.

Table 1: Petri net transition parameters for CPU jobs.

Transition Firing distribution Delay Priority

AR Exponential ArrivalRate NA

T1 Instantaneous — 4

T2 Instantaneous — 1

SR Exponential ServiceRate NA

PDT Deterministic PDD NA

T5 Instantaneous — 2

T6 Instantaneous — 3

PUD Deterministic PUD NA

concurrently. When T1 fires, a token is removed from
P1 and three tokens are generated and deposited in
places P0, P6, and CPU Buffer, respectively. Initially,
CPU is in the Stand By mode. When a job arrives, a
token is deposited in place P6 and transition T6 is
enabled.

(3) When T6 fires, one token from Stand By and P6
are removed, respectively. Two new tokens are then
generated, with one deposited in place Power Up and
the other in P6. The CPU has now moved to a
powering up state. Transition Power Up Delay is now
enabled with a token in Power Up and in P6.

(4) Since transition Power Up Delay has a deterministic
delay, the transition fires after a fixed time interval.
When this happens, the two tokens from Power Up
and P6 are removed, and a token is deposited in place
CPU ON. The CPU is now “on” and ready to process
job events.

(5) When T1 fires, a token is placed in CPU Buffer in
step 2. A token in CPU Buffer, a token in CPU ON,
and a token in Idle enable the immediate transition
T2. When T2 fires, one token, respectively from
CPU Buffer, CPU ON, and Idle are removed and two
new tokens are generated, with one deposited back
in CPU ON and the other in Active. The system is
now in the processing state. With a token in Active,
the transition Service Rate is enabled.

(6) Service Rate is an exponential delay and it will fire
randomly after some time in the interval [0, 0.1].
After Service Rate fires, the token is removed from
Active and placed in Idle.

(7) In the event that another task arrives while the CPU
is still “on” and processing other tasks (steps 1-2), a
token will be deposited in P6 and CPU Buffer. When
the CPU is already “on”, having a token in P6 will
enable T5 to fire immediately. The tokens from both
P6 and CPU ON will be removed and a single token
will be placed in CPU ON. This is necessary because
tokens cannot be allowed to accumulate infinitely in
any place.

(8) The token deposited to CPU Buffer will remain there
until the CPU is idle as determined by a token in Idle.
All jobs that arrive while the CPU is “on” will cause
the Petri net to cycle through steps 7 and 8.

(9) However, in the event that the job arrival rate is
very slow, the CPU may power down and move
to the Stand By state. This happens when there
is a token in CPU ON and no tokens in Active
and CPU Buffer, transition Power Down Threshold
becomes enabled. The small circle at the ends of
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Table 2: Simulation parameters.

Total simulated time 1000 seconds

Arrival rate 1 per second

Service rate 1 per second

the arcs from Active and CPU Buffer specify this
inverse logic. Since Power Down Threshold is a tran-
sition with deterministic delay, it will fire after a
specified period Power Down Delay (PDD). When
Power Down Threshold fires, a token from CPU ON
will be removed and transferred to Stand By. The
CPU has now moved to the Stand By state.

By computing the average number of tokens in a certain
place during the duration of the simulation time results in
the “steady-state” percentage of time the CPU spends in
that state. For example, the average number of tokens in
CPU ON will indicate the percentage of time the CPU was
“on.” The average number of tokens in Power Up will indicate
the “steady-state” percentage of time that the CPU was
“powering up.” Of course, these percentages are determined
by the ArrivalRate, Service Rate, Power Down Delay, and
Power Up Delay delays. Once the percentages are obtained,
they can be used to compute the total energy consumption
of the system over time as given in (20):

Total Energy =
(
Pstandby × pstandby + Ppowerup × pppowerup

+Pidle × pidle + Pactive × pactive
)× Time,

(20)

where Px is the power consumption rate and py is the steady-
state probability of a specific state.

4. Comparison between Simulation,
Markov Models, and Petri Net

We have developed a discrete event simulator that emulates
the timings of state transitions of CPU. Equation (20) will
be used to compute the total energy for the simulator as
well. Table 2 lists the simulation time, arrival rate, and service
rate parameters. The PXA271 Intel Processor whose power
parameters are given in Table 3 [13] is used in this paper. We
will compare the predicted steady-state probabilities and the
energy estimates of the event simulator, the Markov model
and the Petri net model while the Power Down Threshold is
varied from 0.001 to 1 second and the Power Up Delay is
fixed at 0.001, 0.3, and 10 seconds.

Figure 5 shows the percentage of time the CPU spends
in the different states when Power Up Delay or the time
for the CPU to “wake up” is fixed at 0.001 seconds. The
Power Down Threshold is the length of time that the CPU
waits in the Idle state before it transitions to the Stand By
mode.

Figure 5 allows us to study the effects of increasing
the Power Down Threshold. Intuitively, it is obvious that as
the Power Down Threshold increases, the Idle time increases
appropriately as indicated in the figure. The amount of

Table 3: System model Petri net power parameters.

State Power rate (mW)

CPU Stand By 17

CPU Idle 88

CPU Power Up 192.976

CPU Active 193

Radio Stand By 1.44e − 4

Radio Idle 0.712

Radio Power Up 0.034175

Radio Active 78
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Figure 5: Power U p Delay = 0.001 seconds.

time in Stand By decreases proportionally, and more and
more time is spent in Idle and the CPU moves to Stand By
fewer times. This means that the time spent in powering up
decreases as well because there are fewer times the CPU goes
to Stand By. Notice that the Active time remains constant
indicating that for the most part the Power Down Threshold
does not affect the utilization of the CPU.

In all of the figures, the simulator results are given by the
solid line. The Markov model is represented by the line with
squares, and the Petri net by the line with circles.

Figure 8 shows the energy consumption estimates for
each of the three methods. It is interesting to note that the
average difference between the Markov model energy esti-
mates compared to the simulator is equal to the average dif-
ference between the Petri net and the simulator as shown in
Table 4.

Figure 6 depicts the behavior of the CPU when the
Power Up Delay is fixed at 0.3 seconds. Although, the Petri
net model seems to overestimate the percentages of each of
the four states as compared to the simulator, it tends to be
a better indicator of the system than the Markov model.
Figure 9 shows the energy consumption estimates for each
of the three methods. It is interesting to note that the Petri
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Figure 6: Power U p Delay = 0.3 seconds.
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Figure 7: Power U p Delay = 10 seconds.

Table 4: ΔEnergy (Joules) estimates (Power U p Delay = 0.001
second).

Power down ΔSim-Markov ΔSim-Petri net ΔMarkov-Petri net

Avg. 7.37 7.37 0.05

Variance 11.88 12.18 0.00

STD DEV 3.45 3.49 0.03

RMSE 8.07 8.08 0.06

net energy estimates are now closer to the simulator results
than the Markov model. As Table 5 shows, the average energy
estimate difference for all estimates between the simulator
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Figure 8: Energy estimates for Power U p Delay = 0.001 seconds.
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Figure 9: Energy estimates for Power U p Delay = 0.3 seconds.

and the Markov model is 7.28 Joules, while the difference
between the simulator and the Petri net is only 4.99 Joules.

Figure 7 depicts the behavior of the CPU of an extreme
case when the Power Up Delay is fixed at 10 seconds. In this
scenario, the CPU spends a significant amount of time in
Power Up as it “wakes up.” In this setting, the Markov model
completely fails to estimate the behavior of the simulator.
The Petri net on the other hand seems to be in lock step with
the simulator results. The energy consumption comparison
in Figure 10 and Table 6 further shows that the Petri net
model is more accurate than the Markov model.

By comparing three different scenarios (Power Up Delay
of 0.001, 0.4, and 10 seconds) and of which two were extreme
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Figure 10: Energy estimates for Power U p Delay = 10 seconds.

Table 5: ΔEnergy (Joules) estimates (Power U p Delay = 0.3 sec-
ond).

Power down ΔSim-markov ΔSim-petri net ΔMarkov-petri net

Avg. 7.28 4.99 2.29

Variance 6.71 3.55 0.51

STD DEV 2.59 1.88 0.71

RMSE 7.69 5.30 2.39

cases (0.001, and 10 seconds), we were able to show that the
Petri net is better adept at predicting the behavior of the
simulator than the Markov model. The Petri net hence is a
better method of modeling a CPU.

Another interesting observation from these experiments
is that a Power Up Delay of 10 seconds results in an
energy consumption trend that actually decreases as the
Power Down Threshold increases (see Figure 10). This is
because the Power Up power rate is much higher than the Idle
rate. As the Power Down Threshold increases, the time spent
in Idle also increases, and hence decreases the number of time
the CPU goes to the Stand By state. As a result, the number
of power up transitions decreases, leading to reduced energy
usage. From this we can gather that it is more efficient to
allow a CPU to idle than to have it repeatedly move from
a power down state to active.

5. Evaluation of a Simple Sensor System

In this section, the energy prediction of a Petri net model for
a simple sensor system will be compared against real mea-
surements collected from an IMote2 node acting as a sensor
node. Figure 11 depicts the generic operating behaviour of a
sensor system node. The system remains in a wait state until
a random event occurs at which point, a message is received,
some computation is required, and then the results are

System states

Transmitting

Transmit_delay

Receive_delayReceiving

Computation_delay

Computation

Wait/receiving/computation/transmitting stage

Temp_place

Temp

Job_arrival

Wait

Figure 11: Simple system model of node in wireless sensor network.

Table 6: ΔEnergy (Joules) estimates (Power U p Delay = 10 sec-
onds).

Power down ΔSim-markov ΔSim-petri net ΔMarkov-petri net

Avg. 42.41 0.12 42.41

Variance 1.85 0.00 2.00

STD DEV 1.36 0.06 1.41

RMSE 42.43 0.13 42.43

Table 7: Measured power requirements for different IMote2 states.

State Mean power (mW)

Idle 1.216

Receiving 1.213

Computation 1.253

Transmission 1.028

transmitted to some other node. The transition Job Arrival
is the only one that fires randomly using an exponential
distribution; all others are deterministic transitions. The
transition Temp and place Temp Place are required in the
Petri net to account for the fact that the IMote2 node is not
capable of handling events that are less than 1 second apart;
the Temp transition fires after a fixed 1 second.

Figure 12(b) depicts how a power supply was used to
power the IMote2 node. The voltage across a 1.16 Ohm
resistor was monitored to determine the current draw of the
system. The power consumed by the IMote2 as seen at the
battery terminals was measured in four different states of
operation: computation, idle, transmission, and receiving.
The measured power values listed in Table 7 are the aver-
age power consumed in these states. It is interesting to note
that the transmission state has the least power consumption,
even than that of the Idle case. Although this might seem
counterintuitive, it must be borne in mind that while
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Figure 12: IMote2 power collection setup.

Table 8: Petri net transition parameters for a simple system.

Transition
Firing

distribution
Delay
(sec)

Steady state
probability (%)

Job Arrival Exponential 3.0 59.8

Temp Deterministic 1.0 19.7

Receive Delay Deterministic 0.00597 0.098

Computation Delay Deterministic 1.0274 20.2

Transmit Delay Deterministic 0.0059 19.7

Table 9: Steady-state probabilities for a simple system.

State/place Probability (%)

Wait 59.8

Temp place 19.7

Receiving 0.098

Computation 20.2

Transmitting 19.7

the IMote2 is idling, the receiver is actively “listening”
(although it is not receiving anything). The datasheet for the
CC2420 radio chip on the IMote2 lists the receive current
consumption at 18.8 mA, whereas for transmission, the
current draw is 17.4 mA. To obtain the power consumption
in the nonidle states, the IMote2 node executed programs
that either ran a sort routine repeatedly, transmitted packets,
or received packets. This data was collected for the time it
took to send or receive 50 packets.

Once the power parameters of the IMote2 were charac-
terized, the energy consumption of the IMote2 as a node in
a sensor network was found. This was done by triggering the
node randomly for 100 events while the power consumption
was monitored. These 100 events took 266.5 Seconds, and
resulted in an average power consumption of 1.261 mW.
The energy consumption of the IMote2 was found to be
0.336137 J as listed in Table 10.

Using the power parameters collected, the Petri net was
simulated until steady-state probability values were obtained.
This took about 10 minutes on a 2.80 GHz computer running
XP. Table 8 lists the transitions in the Petri net and the delays.
Table 9 lists the steady-state probabilities of the places for
the given transition parameters in Table 8. Equation (21)

Table 10: Results of actual system and petri net.

IMote2 execution time 266.5 sec

Average IMote2 power 1.261 mW

IMote2 energy usage 0.336137 J

Petri net energy usage 0.326519 J

Percent difference 2.95

was used to compute the energy consumption resulting from
these probabilities. As Table 10 indicates, the actual energy
consumed by the IMote2 and the energy predicted by the
Petri net vary only by about 3 percent.

Total Energy =
(
PWait ×

(
pWait + pTemp Place

)

+ PReceiving × pReceiving

+ PComputation × pComputation

+PTransmitting × pTransmitting

)
× Time.

(21)

6. Modeling a Sensor Node in
Wireless Sensor Networks

In this section, stochastic colored Petri nets are used to
model the energy consumption of a sensor node in a wireless
sensor network using open and closed workload generators
as shown in Figures 13 and 14. Generally, the behavior of
nodes in a wireless sensor network follows the same basic
pattern. First, a node in Idle or Stand By is “awoken” by either
an external event or a message from another node. This node
then proceeds to process the event or message that typically
involves some computation. The resulting information is
then transmitted to other sensor nodes or a centralized data
collector. Finally, the node moves either to Idle or Stand By if
no more events arrive for some time period. It then “waits”
for another event.

Unlike Markov models, the ease with which a Petri net
can be designed allows for complicated scenarios to be mod-
eled. Figures 13 and 14 describe Petri net models of a pro-
cessor capable of servicing multiple tasks. A colored Petri net
is capable of assigning numerical values or other attributes
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Figure 13: Closed system model of node in wireless sensor network.

to tokens to allow for enhanced decision making capabilit-
ies. The characteristics of a token can be checked, using
expressions called “local guards,” as the token is input to a
transition. Local guards can be used to allow or deny tokens
from activating a transition. For example, transitions DVS 1,
DVS 2, and DVS 3 have local guards associated with them
and the appropriate transition fires only if the token in its
input place (Execute) has a corresponding value of 1, 2, or
3 associated with it. This feature allows the model to simu-
late a DVS processor using a practical variable voltage sys-
tem where the processor stops executing while changing
operating parameters [5]. Tokens of different values result in
different execution speeds simulating the change in the oper-
ating parameters.

The Petri nets in this section model a system that services
jobs of a single type. As soon as a job is generated, a
token is placed in either place P0 for the closed workload
generator (Figure 13) or place Event Arrival for the open
workload generator (Figure 14). We use the processor and
radio parameters as given in Table 3 [13] for the iMote2
sensor platform to provide realistic analysis.

6.1. Energy Model Using a Closed Workload Generator.
Figure 13 demonstrates a stochastic colored Petri net (SCPN)
[22] model of a sensor node using a closed workload gen-
erator. The portion of the Petri net labeled “Workload Gen-
erator” generates the job events, while the portions marked
“Radio” and “CPU” refer to those respective components.

The system is composed of four states: “Wait,” “Receiving,”
“Computation,” and “Transmitting.” There are two states
associated with the CPU: “Sleep” and “Active.”

In addition, our model implemented based on TimeNET
utilize a feature called “global guards” to specify more
“global” conditions for the firing of transitions. We use global
guards in the forms of expressions at the transitions that
remove the need to provide connections using arcs. For
example, these conditions can be used to check for the num-
ber of tokens in a given place. This simplifies the drawing of
the Petri net significantly.

Simulation of the open workload Petri net given in
Figure 13 results in the movement of tokens as given below.

Global guards for the Petri net in Figure 13 are given in
Table 11.

The Petri nets in this section model a system that services
jobs of a single type. As soon as a job is generated, a token is
placed in either place P0 for the closed workload generator
(Figure 13) or place Event Arrival for the open workload
generator (Figure 14).

The system then moves from the “Wait” state to
the “Receiving” state using transition RadioStartUpDelay R
which simulates the time for the radio to start up. Once
the system is in the Receiving state, this allows the token in
Radio Jobs (Radio) to move to Listen. The Petri net begins
to simulate “Channel Listening” for an available communica-
tion slot. Thereafter, the radio proceeds to “receive” informa-
tion in the Communicate place, and after which, a token is
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Figure 14: Open system model of node in wireless sensor network.

deposited in the CPU Buffer for the purpose of awakening
the CPU for error checking the received packet. Any tokens
(jobs) in the Buffer cause the CPU to transition from the
Sleep state to the Active state.

If the CPU is Idle, the token moves from the place Buffer
to DVS Wait. The transition labeled DVS Delay simulates the
time for any overhead to execute a particular task. Finally, the
token moves to the Execute place to simulate the execution of
the job on the CPU. Depending on the value of the token,
either DVS 1, DVS 2, or DVS 3 is enabled. Once enabled,
the transitions will fire after fixed intervals that represent the
time to service the appropriate task. Thereafter, the CPU then
moves to Idle.

Once the CPU has “processed” the received packet, the
radio moves to an “idle” mode. The system then moves to the
Computation state. The token that was generated and placed
in TaskPerJob is moved to the Buffer and the CPU proceeds to
service the job simulating any computation required for the
event generated. The system then moves to the Transmitting
state using transition RadioStartUpDelay T to awaken the
radio, where the processed information is “transmitted” to
some base station using the same steps as for the Receiving
state. Finally, the state moves back to the Wait state. The
CPU Sleep/Active states operate independently of the system
states. The CPU is “woken” from sleep if any tokens are

placed in the Buffer; however, depending upon the CPU
PowerDownThreshold, the CPU may go back to “sleep”
during the communication stage. In which case, the CPU
may need to be woken up again.

The Petri net assumes that the radio is put to sleep
after the Transmitting state. However, between the Receiving
and Computation states the radio is idle. The Petri net
also assumes that the radio wake up cost is the same
whether the radio is awoken from sleep to active or idle
to active; RadioStartUpDelay R = RadioStartUpDelay T =
RadioStartUpDelay. We will present the simulation results
and analysis in Section 7.

6.2. Energy Model Using an Open Workload Generator.
Figure 14 demonstrates a stochastic colored Petri net (SCPN)
[22] model of a sensor node using an open workload
generator. This Petri net is very similar to the one with the
closed workload generator presented previously. Many of the
transitions and global guards given in Table 11 are also used
here. The three additional transitions unique to this model
are given in Table 12.

The main difference between the close model (see
Figure 13) and the open model (see Figure 14) is that events
arrive independently of the state of the system in the Petri net
given in the open model. When transition T0 fires randomly
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Table 11: Closed system model Petri net transition parameters.

Transition Type Delay Global guard

T0 DET AR (#Wait > 0)

RadioStartUpDelay R DET 0.000194 (#P0 > 0)

RadioTurnOn INST (3) — ((#Receiving > 0) ‖ (#Transmitting > 0))

Channel Listening DET 0.001 ((#Receiving > 0) ‖ (#Transmitting > 0))

Transmitting Receiving DET 0.000576 NA

Power Up Delay DET 0.253 (#Buffer > 0)

T3 INST (2) — (#Active > 0)

DVS Delay DET 0.05 NA

DVS 1 DET 0.03 dvs1 == 1.0 (Local Guard)

DVS 2 DET 0.01 dvs2 == 2.0 (Local Guard)

DVS 3 DET 0.081578 Comm == 3.0 (Local Guard)

T17 INST (3) —
((#Buffer == 0) && (#Idle > 0)

&& (#RJobsComplete == ComPackets))

T71 INST (2) —
((#Buffer == 0) && (#Idle > 0)

&& (#RJobsComplete == ComPackets))

T7 INST (1) — ((#Computation > 0) ‖ (#Wait > 0))

Task Delay Per Job DET 0.000001 #Computation > 0

RadioStartUpDelay T DET 0.000194
((#TaskPerJob == 0) && (#Buffer == 0)

&&(#Idle > 0))

T19 INST (3) —
((#Buffer == 0) && (#Idle > 0)

&& (#RJobsComplete == ComPackets))

Power Down Delay DET PDT ((#Buffer == 0) && (#Idle > 0))

Wait Transmitting INST (3) — (#Transmitting > 0)

Wait Begin INST (3) — (#Wait > 0)

using an exponential distribution, a token is deposited back
in place P2 and a new token is placed in place Event Arrival.
With a token in place P2, transition T0 can fire again at
any time. In order to assure that multiple but closely spaced
events each trigger a new system cycle, place Start Event and
transition T1 were needed.

As mentioned before, the ease of building Petri nets
allows one to simulate complex behavior. The Petri net in
Figure 14 describes just one particular scenario. Any varia-
tion of other scenarios can just as easily be simulated by slight
modifications to the Petri net. This flexibility and ease in
modeling a system can go a long way towards obtaining an
understanding of the system and hence exploiting power sav-
ing features.

Using the Petri net in Figure 14, the effects of the
Power Down Threshold of the CPU on the system can easily
be studied. The next section explores results obtained from
simulating the Petri net.

7. Energy Evaluation of a Sensor Node

Based on the Petri net models presented in the previous
section, this section evaluates the energy consumption of a
sensor node and discusses the potential applications of our
Petri net model. For all experimental results presented in
this section, we use our models to estimate the total energy
consumption for a time interval of 15 minutes unless speci-
fied otherwise.

7.1. Analysis Using Closed Workload. Figure 15 describes the
energy characteristics of a wireless sensor node with a closed
generator as Power Down Threshold increases. We aim to
use our model to address the question that was posed in
Section 1: what is the optimum Power Down Threshold that
yields minimum energy consumption in a wireless sensor
network?

In Figure 15, powering down the CPU immediately after
the computation does not result in the minimal energy
consumption, neither does always keeping the CPU active
achieve the optimal energy efficiency. The optimum energy
consumption of approximately 2432 Joules occurs at a
Power Down Threshold of 0.00177 seconds. This is a 35%
decrease in energy consumption that occurs when the CPU
is immediately powered down to a low power state. This
is also a 29% decrease in energy consumption that occurs
when the CPU is never powered down. Interestingly, it is no
coincidence that the minimal energy consumption occurs at
this point as will be illustrated.

In the closed model, all transitions are deterministic
including transition T0 for generating jobs as well as
transition Channel Listening. Although, the results of the
closed model are predictable, the results from this model can
be used to identify four classes of energy values due to three
boundaries that arise. These three boundaries delineate shifts
in energy consumption trends as Power Down Threshold
increases. The boundaries are generated because there are
three points in the system where the CPU can power
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Figure 15: Power down threshold versus energy requirement for a closed model with a job arrival rate of 1 event/second.

down after having been powered up. In other words, the
boundaries are the results of three different intervals in the
system where the CPU can power down after having been
powered up.

The first class of values are those associated when the
CPU is powered down after computation at a threshold less
than the sum of the least transition times between con-
secutive CPU usages. Hence, the system is required to power
up three times in one system cycle. From Table 11, this hap-
pens when Power Down Threshold < Tasks Delay Per Job
since this is the transition with the least time between con-
secutive CPU usages. The second class results when the CPU
powers down after some larger threshold and as a result is
required to power up twice during the system cycle. In the
third class, the CPU powers up once, and in the fourth class
the CPU powers up and never powers down again. Each will
be examined in detail in the following.

When Power Down Threshold is smaller than Tasks
Delay Per Job, that is, it is less than the time between the
Receiving and Computation states, the CPU powers down
and is then forced to power up 3 times per system cycle as
seen in Figure 16. The red depicts the CPU Power Up energy
cost, the green depicts the CPU Active energy cost, and the
aqua depicts the CPU Idle energy cost. The purple depicts
the radio energy costs.

However, when Power Down Threshold is larger than
Tasks Delay Per Job, then the CPU will not power down and
will not need to be powered up again between the Receiving
and Computation states. This deterministic transition deter-
mines how long the CPU remains idle between the Receiving
and Computation state. At this point, the CPU remains

Table 12: Open system model Petri net transition parameters.

Transition Type Delay Global guard

T1 INST (2) NA (#TaskPerJob > 0)

T2 INST (1) NA (#Wait > 0)

T171 INST (3) NA (#Wait == 0)

powered up between the Receiving and Computation states,
and as a result there is one less CPU power up.

Since Power Down Threshold is larger than Tasks Delay
Per Job, the CPU is powering down fewer times. Hence, the
time it takes to power up the CPU is being saved from the
cycle time as depicted in Figure 17.

Again, applying the same principal as above, select
the next minimum sum of transitions of deterministic
delays. From Table 12, this happens for RadioStartUpDelay
+ Channel Listening + Transmitting Receiving or the sum of
time when the radio is awoken, a wireless communication
slot found, and data is transmitted.

So when

Power Down Threshold > RadioStartU pDelay

+ Channel Listening

+ Transmitting Receiving,
(22)

the CPU now remains powered up between the Computation
and Transmitting states. There is no Power Up Delay in the
Transmitting state as shown in Figure 18.
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Figure 17: Energy diagram of 2 CPU power ups in one system cycle for closed model (not drawn to scale).

The final set of transitions between two consecutive CPU
usage requests are between the end of the current Trans-
mission state and the next Receiving state. This means that
when

Power Down Threshold > Job Arrival Rate

+ RadioStartU pDelay

+ Channel Listening

+ Transmitting Receiving,
(23)

the CPU now is always powered up. The CPU no longer
powers down between the end of the previous Transmitting
state and the next subsequent event.

The difference between this and the previous cases is that
Power Up Delay is no longer a factor. Power Down Threshold
is sufficiently large that the CPU does not power down after
it powers up for the first time between events for this arrival
rate as shown in Figure 19.

Each of these cases with the appropriate cycle times is
presented in Table 13.

As Table 13 indicates, a sudden shift in energy consump-
tion can be expected when

Power Down Threshold > RadioStartU pDelay

+ Channel Listening

+ Transmitting,

(24)

that is, Power Down Threshold > 0.00177 seconds. This
can be verified in Figure 15. When Power Down Threshold
is 0.00176 second, the system energy consumption is

Table 13: Power Down Threshold cases for a closed system and their
associated cycle times.

Power down threshold criteria
Delay

(second)
Power up

delays
Cycle time
(second)

=0 0 3 2.00254

>TDPJ 0.000001 2 1.74954

>RSUD+CL+TR 0.00177 1 1.49654

>AT+RSUD+CL+TR 1.00177 0 1.24354

3007.827 Joules. However, when Power Down Threshold is
set to 0.00177 second, the system energy consumption is
2431.95 Joules. This is a drop of 19.15% in energy con-
sumption just by increasing Power Down Threshold by
0.00001 seconds. This decrease in energy consumption
results from the fact that the CPU is powering up only once
per cycle as opposed to twice. The CPU is saving the heavy
Power Up energy penalty.

However, as Power Down Threshold continues to in-
crease, the system energy consumption increases steadily.
Upon closer inspection, the CPU Power Up energy remains
constant; however, it is the CPU Idle energy that contributes
to the overall increase in the system consumption. As
Power Down Threshold increases, the one Power Up penalty
is being avoided; however, the time the CPU is in the Idle
state is being increased and hence the greater system energy
consumption is.

This increase continues and even results in a maximum
energy consumption of 4501.96 Joules at a Power Down
Threshold of 1 second and then drops suddenly to 3429.92
Joules when Power Down Threshold increases by 0.00177
seconds. This abrupt change is, of course, due to the CPU
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Figure 19: Energy diagram of no CPU power ups (after the first one) in one system cycle for closed model (not drawn to scale).

remaining always on as opposed to powering down once
per cycle as indicated in Table 13. Although the CPU Idle
energy increased during this transition, the saving from the
heavy powering up penalty is sufficient to result in the system
energy consumption that is less than when the CPU was
powering down immediately after it finished computation or
when Power Down Threshold was zero.

We can also see how the tradeoff between the CPU Power
Up and Idle energy consumption of only one power up delay
results in the minimum energy consumption at a Power
Down Threshold of 0.00177 seconds. This is when

Power Down Threshold > RadioStartU pDelay

+ Channel Listening

+ Transmitting.

(25)

We can see from this exercise that powering down the
CPU immediately after it completes processing is not the best
solution. A careful analysis of the system parameters should
be conducted before deciding upon a Power Down Threshold
that will minimize overall energy consumption.

An interesting point to note is that as Power Down
Threshold is steadily increased, the Radio Active Energy
decreases. The reason for this is apparent because the energy
consumption of the Radio in the active state is the time
spent in the Receiving and Transmitting states. However, dur-
ing these states, after communication, the “received” packet
needs to be processed by the CPU for integrity checking
of the checksum. If the CPU has powered down by then,
the Radio needs to wait in an active state consuming the
active energy rate while the CPU powers up and then pro-
cesses the packet. This decrease in the RadioActiveEnergy
as Power Down Threshold is decreased is indicative of the
fact that the CPU is powering down fewer and fewer times

during each cycle, and as a result the Radio needs to spend
less time in an active state while the CPU powers up. When
Power Down Threshold increases to the point where the CPU
is always on, the energy consumption of 368.24 Joules is just
for the communication involved without the powering up
time overhead.

Although the cases where the system CPU moves from
powering up twice to only one time

Power Down Threshold > RadioStartU pDelay

+ Channel Listening

+ Transmitting Receiving
(26)

and powering up once to always staying on

Power Down Threshold > Arrival Time

+ RadioStartU pDelay

+ Channel Listening

+ Transmitting Receiving
(27)

can be clearly identified in Figure 15, it is a little harder
to identify the first case where Power Down Threshold >
Task Delay Per Job or 1e−6 Seconds. This is because Time
NET uses the float type and since it is a very small value
used during simulation, the value of the floating value and
the rounding error may have skewed the results of the simu-
lation.

By analyzing the closed model case, an understanding
of the internal workings of the Petri net and its resulting
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Figure 20: Power Down Threshold versus energy requirements of an open model for an arrival rate of 1 event/second.

behavior was obtained. This understanding can be applied
to the open model as well, however, while acknowledging
that the four cases in Table 13 are not as distinct for the open
model.

7.2. Analysis Using Open Workload. As Figure 20 shows,
having the CPU go to sleep immediately after processing
a task is not beneficial for this system either. This can be
seen when the Power Down Threshold is 1.00e − 9 seconds
or almost zero. The Power Up transitional energy to wake
the CPU becomes prohibitive. However, it is not beneficial
to always keep the CPU “on” either as indicated when
Power Down Threshold is five seconds or more. However,
when Power Down Threshold is approximately 0.01 seconds,
the energy requirement is approximately 2589 Joules which is
almost 55% less than the energy consumed when the CPU is
shut down immediately after every task. This is also less than
the energy consumed when the CPU is always on by almost
26%.

Figure 20 is not meant to present the minimum energy
level that can possibly be obtained, but this figure does
indicate the energy consumption in the four distinct classes.
Although Figure 20 is not plotted at even intervals of
Power Down Threshold, the energy trends seem to be rela-
tively smooth.

Except for transitions T0 and Channel Listening, all other
transitions are deterministic that fire after fixed intervals.
An exponential distribution was used for transitions T0 and
Channel Listening due to the random and sporadic nature of
these events. Assuming that the firing time of these exponent
transition can be treated as a random variable, this will
result in an average firing rate of (1/ArrivalRate). Since the
Channel Listening time is so small, it will be used as it is.

In the open model, transitions T0 and Channel Listening
fire randomly in the specified time interval as given by the
exponential distribution. A randomness is introduced that

Table 14: Power Down Threshold cases for an open system and
their associated cycle times.

Power down threshold criteria
Power up

delays
Cycle time
(second)

0 3 1.00254

>TDPJ 2 0.74954 (1.0)

>RSUD + CL + TR 1 0.49654 (1.0)

>AT + RSUD + CL + TR 0 0.24354 (1.0)

blurs the sharp boundaries in the energy consumption as
Power Down Threshold increases as was seen for the closed
model.

With open workload, there may not be a delay between
the current cycle and the next cycle because the transition
that dictates the arrival rate now fires randomly according
to an exponential distribution. As Figure 14 and Table 12
indicates after transition T0 fires, the token is returned back
to place P2 again which enables the transition again. T0 may
fire again immediately after it has just fired or it may fire after
waiting the full length of the interval. When T0 will fire will
be determined by the probabilistic nature of the exponential
distribution.

It is possible that when the system finishes servicing the
current “event” a new event is waiting for it. Therefore, there
is no Arrival Time delay between the current and the next
“event.” This can happen when the Arrival Time is less than
the Cycle Time minus the Arrival Time as was expressed
before. With an Arrival Rate of 1, event occurs every 1.0
seconds on average E[X] = 1/λ where λ is the Arrival Rate.
Table 13 can be used and the “Cycle Time” values can be
modified by removing the average Arrival Rate from the
original cycle times.

The cycle times have been adjusted in Table 14
to show the average cycle times of the system given
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Table 15: Power Down Threshold cases for an open system and
their associated down times.

Power down threshold criteria
Cycle time
(second)

Down time
(second)

0 1.00254 0

>TDPJ 0.74954 (1.0) 0.25046

>RSUD + CL + TR 0.49654 (1.0) 0.50346

>AT + RSUD + CL + TR 0.24354 (1.0) 0.75646

Power Down Threshold. However, it should be noted, that
since transition T0 fires every 1.0 seconds on average, when
Power Down Threshold is equal to 0, events are being gen-
erated at a faster rate than can be serviced as indicated by the
cycle time. The system is slightly saturated.

In the next three cases, the cycle time is shorter than the
average Arrival Rate implying that the average Arrival Rate
dictates how often events are serviced. In the latter three
cases, the system completes servicing the previous event and
waits for the next event to be generated. The length of the
time that the system waits in idle is given in the last column
“Down Time” in Table 15. In the closed model of the system,
since events always arrive after a fixed interval after the sys-
tem has completed servicing the previous event, the “Down
Time” is always 1.0 seconds. Unlike the closed model results
in Figure 15 where the minimum energy consumption

at the corresponding Power Down Threshold is apparent,
identification of this point for an open model system can
be challenging and can fall at a Power Down Threshold that
has not been simulated. The open model of the system pre-
sented in this paper contains only two transitions that use
exponentially distributed firing rate, and already their results
are unpredictable in terms of arriving at an expression to
analytically explain them.

If a larger combination of transitions using deterministic
and exponential distribution firing rates are used, the result-
ing outputs can be expected to be even more difficult to ana-
lytically derive. This indicates that Petri nets are a very
important tool in modeling and analyzing systems.

8. Modeling Wireless Sensor Networks

The Petri net models constructed for the sensor nodes can
also be used to create a network of sensors. TimeNET has the
capability of modularizing a Petri net so that a hierarchy of
Petri nets can be designed. For example, Figure 21 depicts a
sensor network composed of four nodes S1, S2, S3, and S4
with communication links as described. Slightly modifying
the Petri net shown in Figure 13 and substituting it for each
of the nodes the sensor network can be created as shown in
Figure 22. The filled-in box labeled Sensor 1 corresponds to
S1, and so forth. The box labeled LinkA 2 corresponds to
a Petri net simulating the distance link between S1 and S2
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which also incorporates bit error rate, propagation delay, and
channel availability.

Using this platform, the energy consumption of a wider
range of areas such as routing, network communications,
and even high level sensing applications can be modeled and
simulated. With such a detailed model from the physical layer
to the network layer, our platform allows for research that
require knowledge at all these levels such as energy-aware
cross-layer routing. In fact, this platform can be used for
almost an endless number of research areas.

9. Conclusion

Using stochastic colored Petri nets, this paper develops a
detailed and flexible energy model for a wireless sensor node.
The experimental results indicate that this model is more
accurate than the one based on Markov models. This is due
to the fact that a Markov model requires the modeled systems
have memoryless states. A wireless sensor node that relies on
time to dynamically change its power state does not satisfy
the Markov chain’s memoryless requirements. In addition,
the Petri net model is much more flexible than the Markov
model and can easily accommodate changes.

Further, in this paper, we have successfully demonstrated
using our model that immediately powering down a CPU
after every computation is not an energy minimal option and
nor is never powering down the CPU. However, using our
model, it is possible to identify a Power Down Threshold that
results in large power savings. Through this example, we were
able to show that our model is very useful and provides a
valuable platform for energy optimization in wireless sensor
networks.

The drawbacks of our Petri net model is that simulating
Petri nets can be computationally intensive and require rela-
tively long simulation time to achieve steady-state probabili-
ties. The models presented in this paper required between 10
and 15 minutes of simulation on a 2.8 GHz computer run-
ning Windows XP to stabilize. In comparison, evaluation of
closed-form Markov equations is almost instantaneous.
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“Survey of wireless sensor networks simulation tools for
demanding applications,” in Proceedings of the 5th Interna-
tional Conference on Networking and Services (ICNS ’09), pp.
102–106, April 2009.



20 Journal of Computer Networks and Communications

[19] X. Fu, Z. Ma, Z. Yu, and G. Fu, “On wireless sensor networks
formal modeling based on petri nets,” in Proceedings of the
7th International Conference on Wireless Communications, Net-
working and Mobile Computing (WiCOM ’11), pp. 1–4, 2011.

[20] D. R. Cox, “The analysis of non-markovian stochastic pro-
cesses by the inclusion of supplementary variables,” Proceed-
ings Cambridge Philosophical Society, vol. 51, no. 3, pp. 433–
441, 1955.

[21] R. German, “Transient analysis of deterministic and stochastic
petri nets by the method of supplementary variables,” in Pro-
ceedings of the 3rd International Workshop on Modeling, Ana-
lysis, and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS ’95), pp. 394–398, IEEE Computer Society,
Washington, DC, USA, 1995.

[22] TimeNET 4.0 A Software Tool for the Performability Evalua-
tion with Stochastic and Colored Petri Nets, User Manual.



Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical 
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


