
A New Parity-Based Migration Method
to Expand RAID-5

Yu Mao, Jiguang Wan, Yifeng Zhu, Member, IEEE, and Changsheng Xie

Abstract—To expand the capacity of a RAID-5 array with additional disks, data have to be migrated between disks to leverage
extra space and performance gain. Conventional methods for expanding RAID-5 are very slow because they have to migrate
almost all existing data and recalculate all parity blocks. This paper proposes a new online expansion method for RAID-5, named
parity-based migration (PBM). This method only migrates blocks that form a special parallelogram with one side consisting of
only parity blocks. When adding m disks to a RAID-5 with n disks, PBM achieves the minimal data migration which only needs to
move m=ðnþmÞ of all data blocks. Furthermore, no parity blocks are recalculated during the expansion. After expansion, although
the RAID is not a standard RAID-5 distribution, the parity blocks are distributed evenly. Experimental results based on extensive
trace-driven show that, on average, PBM can reduce the time of expansion by 73.6 percent while only reduces the performance of
the expanded RAID by 1.83 percent when compared with Multiple-Device (MD), a toolkit provided in Linux kernel.

Index Terms—RAID-5, capacity expansion, data migration

Ç

1 INTRODUCTION

REDUNDANT array of inexpensive disks Level 5 (RAID-5)
is a popular disk array topology that provides a

relatively low-cost solution to improve both performance
and data reliability. With file system support for checksum,
it can be resilient to single disk failure with multiple
unrecoverable read errors during rebuilding. Although in
some installations, data are mirrored between multiple
storage servers (e.g., GoogleFS and Lustre) or multiple
arrays in the same server (RAID 5 þ 1), RAID-5 is still a
standard implementation in many storage systems. Com-
pared with RAID-6, though RAID-5 has low reliability, it
has more capacity available and performance. When we
consider more exotic forms of storage and memory (high-
speed media, tiered, multi-server arrays, etc.), RAID-5 may
provide enough data availability for a wide variety of use-
cases.

As the volume of users’ data grows at a phenomenal
rate, it is often required to increase both the capacity and
the performance of an existing RAID system to meet the
increasing storage demands. When new disks are added
to supply extra space and/or throughput, it is critical to
avoid any downtime and minimize performance impact
due to data movement in RAID reconstruction, and to
eliminate the risk of data loss upon a disk failure during
the expansion.

The existing approaches [1], [2], [3] for RAID-5 expan-
sion all rearrange data blocks to rebuild a standard RAID-5,
in which data blocks and recalculated parity blocks are
distributed across all of the disks in a round-robin manner.
With a total of n disks in a RAID-5, block b resides on disk
bmod n. However, when n changes, every data block has
to be moved to a new location either on the same disk or
on a different disk to reimplement the rigid modulus-based
placement.Asaresult, reconstructinganewRAID-5requires
migrating nearly 100 percent of the data blocks. Moving
such a large amount of data is always detrimental to the
application performance.

This paper presents a new approach to expand a RAID-5.
We have the following design goals.

. Online expansion with no downtime. Many systems
have to ensure 7 � 24 availability of data services
and thus these systems cannot be stopped to perform
expansion.

. Balanced distribution of parity blocks. Since parity
blocks tend to be hot spots (especially in write-
intensive applications), uniformly distributing par-
ity blocks across the array helps balancing the
loads among all the disks after expansion.

. Minimal data movement. Theoretically, if m disks
are added to a RAID-5 with n disks, the minimal
fraction of data that has to be moved to achieve
balanced data placement is m=ðnþmÞ.

. No parity recalculation. If no new data is written
into the storage systems, the expansion process
should avoid recalculating the parity blocks since
it can significantly prolong the expansion process.

. Incremental expansion. A RAID-5 may be expanded
multiple times, which allows the RAID to continu-
ously increase its storage capacity.

Our approach, named parity-based migration (PBM),
uses two key techniques to achieve the above goals. The

. Y. Mao is with the Department of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, China. E-mail:
routedhust@gmail.com.

. J. Wan and C. Xie are with Wuhan National Laboratory for
Optoelectronics, Wuhan, China. E-mail: jgwan@mail.hust.edu.cn.

. Y. Zhu is with Electrical and Computer Engineering University of Maine.

Manuscript received 22 Aug. 2013; revised 15 Oct. 2013; accepted 20 Oct.
2013. Date of publication 3 Nov. 2013; date of current version 16 July 2014.
Recommended for acceptance by X.-H. Sun.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.279

1045-9219 � 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 2014 1945

first one is to selectively migrate data and parity blocks
and reorganize them according to a specially predefined
pattern. If all zones within a group (See Fig. 1) are virtually
stacked on top of each other, PBM only migrates blocks
that form a special parallelogram with one side consisting
of only parity blocks (See Fig. 4). We prove that among all
RAID-5 expansion schemes, PBM achieves the theoretical
minimum in data migration. The second technique is to
zero out blank blocks to avoid parity recalculation until
a pre-existing data block is updated or a new data block
is written onto the expanded RAID. The PBM-expanded
RAID retains the property of tolerating one disk failure.

Throughout this paper, we use a RAID-5 with the layout
of left-asymmetric parity distribution [4] as an example to
illustrate the basic expansion process of PBM. One instance
of such a RAID is shown in Fig. 1. The top 4 disks form a
standard left-asymmetric RAID-5, where each stripe con-
sists of a parity block and 3 data blocks. Parity blocks
are distributed diagonally on these numbered disks, while
data address decreases as the disk number grows in a
stripe. (Notably, PBM is also applicable to a RAID-5 with
other types of parity distributions.) As illustrated in Fig. 1,
PBM divides the RAID into equal-sized groups, and the
layout pattern of each group repeats across the array. When
adding m new disks to an existing RAID-5 with an initial
set of n disks, each group consists of n consecutive zones
with nþm stripes in each zone. In this paper we modify
the definition of a stripe to be a column of blocks across
all disks, and the stripe number starts with zero in each
zone. Hence in a RAID-5 with n disks, each stripe includes
n� 1 data blocks and one parity block.

The rest of this paper is organized as follows. Section 2
presents the parity-based migration in detail. Section 3
describes experimental results and Section 4 discusses
some related research. Section 5 concludes this paper and
summarizes our future work.

2 PBM: PARITY-BASED MIGRATION

The expansion of a RAID-5 in PBM involves two major
steps: 1) migrating a set of associated blocks from old disks

to new disks, and 2) allocating the blank blocks created in
the first step to build new storage space. In the following,
we first use two simple examples to illustrate our basic
idea, then formally prove our results on the minimal data
movement and perfectly balanced data redistribution.
Multiple expansions are also discussed in this section. In
supplementary file which is available in the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2013.279, we discuss fundamental is-
sues such as addressing, failure recovery, small writes and
migration implementation.

In Table 1, we summarize the notations used in this
paper.

2.1 Examples of RAID-5 Expansion
When new disks are added into a RAID-5 system, data
have to be migrated from the initial set of disks (old disks)
to the recently added ones (new disks). As mentioned in
Section 1, many existing approaches [1], [2], [3] use
modulo operation to determine on which disk a block b
resides ðd ¼ bmod nÞ. When the total number of disks n

Fig. 1. The layout of groups, zones, and stripes when adding a new disk (disk 4 in this example) into an existing RAID-5 with four disks. In general,
when adding m disks into a n-disk array, a set of nþm consecutive stripes form a zone, and a set of n consecutive zones form a group.

TABLE 1
Notations

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20141946

changes, nearly 100 percent of the data blocks have to be
migrated. In contrast, in PBM we only need to migrate
a minimal amount of data and parity blocks from old
disks to new disks. In the following, we give two simple
examples, Eð3; 2Þ and Eð4; 1Þ, to illustrate the basic idea
of parity-based migration, as shown in Figs. 2 and 3,
respectively.

Example 1: Data Migration in Eð3; 2Þ. Assume that two
new disks (disk 3 and 4) are to be added into a RAID-5
with three disks (disk 0, 1, and 2). Fig. 2a illustrates the
block layout of Group 0 before expansion. For Eð3; 2Þ,
each group consists of three zones, with five stripes in
each zone. On each disk, five consecutive blocks in the
same zone form an area. All areas in the old disks can be
classified into two different categories: either with only
one parity block or with two parity blocks. To uniformly
distribute the parity blocks among all disks, one parity
block in each area of the latter category will be migrated
to a new disk in our design. Specifically, we migrate the
one with a larger stripe number. For example, in zone 0,
the parity block P4 on disk 1 will be migrated.

When migrating a parity block, we also want to migrate
its associated data blocks, which is defined below. Note
that for simplicity, we only describe the migration process
for the first group, which can be extended to other groups
easily. Hence we identify a block by its zone number, stripe
number, and disk number, i.e. ðz; s; dÞ, without mentioning
its group number.

Definition 2.1. For a parity block P identified by ðzp; sp; dpÞ,
if sp 2 ½n; nþ m� 1�, then its associated block set is

AðP Þ ¼ zp; sp � i; ðdp � 2iÞmod n
� �

j0 � i � n� 1
� �

where m is the number of new disks to be added.

Note that P 2 AðP Þ and AðP Þ includes no other parity
blocks except P . For example, in Fig. 2a, the marked
parity block P4 is (0, 4, 1), and its associated block set
AðP4Þ ¼ fð0; 4; 1Þ; ð0; 3; 2Þ; ð0; 2; 0Þg. We call all data blocks
in AðP4Þ the associated data blocks of the parity block P4.
ðdp � 2iÞmod n is a strategy of data selection, which is

not unique. In particular, any expression that selects
exactly one block from each old disk with a distinct stripe
number, including a unique parity block, satisfies our
requirements. Here we choose such a strategy because of
its simplicity.

In Fig. 2a, each zone has exactly two parity blocks
that need to be migrated. Such parity blocks and their
associated data blocks are marked in gray.

Note that when m is larger than 1, the target disk which
associated blocks move to is arbitrary theoretically.

During the migration, we aim to balance the distribu-
tion of data and parity blocks among all the disks. This is
achieved by migrating one associated block set onto an
empty area on a new disk. Specifically, for a given parity
block P identified by ðzp; sp; dpÞ, we migrate AðP Þ to the
new disk whose disk number d is equal to sp. For example,
for the parity block P4, we have sp ¼ 4, thus the associated

Fig. 2. Block layout of one group in Eð3; 2Þ. All blocks to be migrated are marked in (a). This is an example in which the blocks are balanced following
redistribution. (a) Before migration. (b) After migration.

Fig. 3. Block layout of one group in Eð4; 1Þ. All blocks to be migrated are marked in (a). This is an example in which data redistribution are not
balanced within a zone, but balanced across a group. (a) Before migration. (b) After migration.

MAO ET AL.: A NEW PARITY-BASED MIGRATION METHOD TO EXPAND RAID-5 1947

block set {(0, 4, 1), (0, 3, 2), (0, 2, 0)}, i.e., {P4, block 5, block
6}, are migrated to disk 4. During this process, each block
keeps its original stripe number as illustrated in Fig. 2b.
As a result, there is no need to recalculate the parity for
each stripe after the migration.

Example 2: Data migration in Eð4; 1Þ. Fig. 3 shows the
block layout before and after migration respectively,
when adding a new disk to a RAID-5 with four disks. In
this example, each group has four zones, and each zone
has five stripes. In Fig. 3a, all blocks to be migrated in
each zone are marked in gray. Although within a given
zone, the blocks to be migrated are not uniformly
distributed among the disks, within each group they
indeed are. Specifically, in each group every disk has
four such blocks. Hence after migration, all disks contain
exactly the same amount of data and parity blocks, as
showed in Fig. 3b.

These two examples respectively represent two different
expansion scenarios, depending on the initial number of
disks n being even or odd. If n is odd, blocks to be migrated
are evenly distributed among disks within each zone.
Otherwise if n is even, data redistribution is non-uniform
within each zone, but uniform across each group.

Generally, each new stripe after migration keeps all
existing data blocks of the corresponding stripe before
migration. In addition, each disk after migration keeps
the same number of data blocks, parity blocks and blank
blocks, no matter n is odd or even. This characteristic can
assure that every disk is accessed evenly after migration.

From the two examples above, we can see the amount
of migrated blocks in a group is n2m, and each group has
ðnþmÞ � n� n original blocks (including data and parity
blocks), so the migration ratio in Eqn. (1) shows our method
moves the minimal data of whole RAID.

Migration Ratio ¼ total num: of blocks migrated

total num: of original blocks

¼ n2m

ðnþmÞ � n� n
¼ m

nþm: (1)

On the other hand, after migration every old disk in a group
reserves n2 blocks and every new disk also has n2 blocks
whichare non-empty. Therefore even distribution of blocks,
including data blocks and parity blocks, is guaranteed.

2.2 Migration Algorithm
Once a block is identified to be migrated, we deploy a table-
based approach to determine onto which disk this block

Fig. 4. All blocks to be migrated form a parallelogram with the bottom side consisting of only parity blocks when all zones in a group are stacked
vertically. (a) The parallelogram in Eð3; 2Þ (Example 1). (b) Eð4; 1Þ is a special case when the parallelogram becomes a line (Example 2). (c) Eð5; 3Þ is
a more typical example in which all blocks migrated form a normal parallelogram.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20141948

should be migrated. For a given parity block P , identified
as ðzp; sp; dpÞ, all of the associated blocks are migrated to
the same new disk sp. We build a small and simple table,
called Moving Table (MT), to facilitate the calculation of
the destination disk number. Each entry in the table is
shown as follows.

zp; sp � i; ðdp � 2iÞmod n
� �

! sp (2)

for 8zp 2 ½0; n� 1�, 8sp 2 ½n; nþm� 1� and 8i 2 ½0; n� 1�.
Here the right hand side denotes the new disk number,
which numerically equals the stripe number sp, as men-
tioned in Example 1 in Section 2.1. Since dp can be calculated
as follows if the original RAID-5 is left-asymmetric
distribution [4], [5]

dp ¼ ðsp þ zpmÞmod n: (3)

We have

zp; sp � i; ðsp þ zpm� 2iÞmod n
� �

! sp (4)

for i ¼ 0; 1; . . . ; n� 1.
Eq. (4) describes the mapping between a block and its

new destination disk. Based on this mapping, we build the
moving table, which is in fact very small and has very little
memory footprint. Table 2 shows the MT for zp ¼ 1 in
Eð3; 2Þ. Since all groups in the disk array are isomorphic,
they all use the same moving table.

2.3 Allocating Blank Blocks
The second major step of expanding a RAID-5 is to allocate
blank blocks to make more storage space available to users.
In an expanded array, new data are allocated first to blank
blocks with the lowest group number, the lowest zone
number, the lowest stripe number and the lowest disk
number in descending priority order. Fig. 5 gives a simple
example in which three new data blocks are allocated to
blank blocks.

In PBM, no blank block is used to recalculate the parity
during writes. When a pre-existing data block, such as
block 0, is updated, the parity block P0 is recalculated
and updated, i.e., P0 ¼ ðblock0Þ � ðblock1Þ, as showed in
Fig. 6a. When new data are written to block 10, as showed
in Fig. 6b, P0 is also recalculated. Specifically, we have
P0 ¼ ðblock0Þ � ðblock1Þ � ðblock10Þ, or P0 ¼ Pold

0 � ðblock10Þ
for better performance. Note that the blank block on disk 4
is not used to recalculate P0. All blank blocks are treated
as zeros so that we do not have to read a blank block when
calculating its corresponding parity.

2.4 Multiple Expansions
An expanded RAID-5 might have to be expanded again to
further increase the capacity and/or the bandwidth. We

use the notation Eðn;m1; . . . ; mkÞ to represent the process
of expanding a RAID-5 k times, with mi new disks added
in the ith expansion, for i ¼ 1; . . . ; k. If the number of disks
added in each expansion is arbitrarily selected, then the
associated blocks of a given parity block reside on disks
with irregular patterns, and thus in the expanded RAID
data may not be evenly distributed among all disks. To
avoid unbalanced distribution, we require that m1 ¼ n
and miþ1 ¼ nþ

Pi
j¼1 mj for 1 � i � k� 1. In general, in the

kth expansion, a total of 2k�1n new disks are added.
With such a requirement, PBM can successfully main-

tain the uniform distribution even after a RAID has been
expanded several times. Fig. 7 shows the block layout of
Eð3; 3Þ and Eð3; 3; 6Þ. In Fig. 7b, blocks of the new storage
space are marked. Even after being expanded twice, the
expanded RAID Eð3; 3; 6Þ still has a data layout very
similar to RAID-5 with left-asymmetric parity placement,
as showed in Fig. 7c. We observe that all data and parity
blocks of Eð3; 3Þ are distributed uniformly among all disks
in Eð3; 3; 6Þ.

During multiple expansions, the moving table grows as
the number of expansions increases. In the kth expansion,
MTk has 22ðk�1Þn2 entries. Considering the addressing,
all the k MTs should be maintained in memory or disks.
The total size of all MTs is:

total size of MTs ¼ n2
Xk

i¼1

22ðk�1Þ ¼ n
2ð22k � 1Þ

3
: (5)

If k is a small number, the total size of MTs is not very
large. For example, in Eð3; 3; 6Þ, k ¼ 2, n ¼ 3, the total size
of MTs is 45 entries.

TABLE 2
Moving Table (MT) for zp ¼ 1 in Eð3; 2Þ

Fig. 5. New data block 10, 11, and 12 are allocated to three blank blocks
that have the smallest stripe number and the smallest disk number in
this zone.

Fig. 6. Recalculate the parity block P0 when (a) block 0 is modified, or
(b) new block is written into block 10. No blank blocks is involved in
parity recalculation. (a) Updating an old data block. (b) Writing a new
data block.

MAO ET AL.: A NEW PARITY-BASED MIGRATION METHOD TO EXPAND RAID-5 1949

3 EXPERIMENT EVALUATION

We use trace-driven experiments on widely used Fedora 14
to compare PBM with three existing migration methods. The
first one is Multi-Device (MD) Reshape toolkit [1], which
has been included in standard Linux kernel. The other
two are ALV [6] and GSR [7]. We develop a PBM expansion
program that creates migration requests and metadata
updates, performs address translations, and schedules
migration requests and use blktrace and btreplay tools to
issue I/O requests according to traces. Also, we develop
the ALV and GSR programs based on MD to schedule
outer I/O requests and migration requests. To reduce
experimentation time, we use an acceleration factor of 10X.

The disks used in our experiments are based on
Seagate_ST1000DM003. The default block size for most
RAID-5 is 32-64 KB [8], [9]. In our experiments, we set the
block size to be 64 KB. For 1000 GB will take a long time
to migrate, we only use one volume to test our migration
method, whose capacity is 10 GB. The key parameters of
the disks are given in Table 3.

We use four different traces to evaluate our design.
These traces include block level accesses, collected beneath
the file system buffer cache but above the storage devices.
Table 4 gives a summary of the trace characteristics.

. FIU traces are collected by FIU for the paper [10].
We use the second trace of four different end-user/
developer home directories, which is named
Home2. It is a 24-hour trace, which is downloaded
from the Storage Networking Industry Association’s
trace repository [11].

. MSR-Cambridge is a serial of traces collected on
production data servers by Microsoft researchers
[12]. Only one trace is used in this study, which is
Hm0 (hardware monitoring server, volume 0). It is
a 7-day trace, which is also downloaded from the
Storage Networking Industry Association’s trace
repository [13].

. Financial1 and Financial2 are two I/O block traces
from OLTP applications running at two large finan-
cial institutions. These two traces are downloaded
from the University of Massachusetts [14], and they
are SPC (Storage Performance Council) format traces.

3.1 Migration Time
We compare the expansion time among PBM, MD, ALV
and GSR when adding a different number of new disks into
an existing RAID-5. During the online expansion process,
the RAID also serves the I/O requests specified in the trace
files. When the expansion completes, the experiment stops
and no new I/O requests from trace files are issued. We
also measure the expansion time when the migration is
performed off-line, i.e., no traces are replayed during the
expansion. Fig. 8 compares the migration time of four
methods under four different workloads and under no
workload (marked as off-line). When the number of new
disks m increases from 1 to 3 or 4 in our experiments,
more data are migrated onto new disks.

While more disks implies a larger degree of parallelism,
it is interesting that the migration time of MD does not vary
much as m changes, especially under workloads of Hm0
and Home2. As showed in Table 4, the I/O arrival rate in
Hm0 is much lower than the other three workloads. As a
result, the responder process in Hm0 takes a significantly

Fig. 7. Expanding a three-disk RAID two times. (a) Layout of Eð3; 3Þ before expansion. (b) Layout of Eð3; 3Þ after expansion. (c) Layout of Eð3; 3; 6Þ:
expanding the RAID again by adding six new disks.

TABLE 3
Disk Parameters

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20141950

lower fraction of disk bandwidth away from the migration
process than it does in the other three workloads. Hence
the migration process takes a much shorter time in Hm0.
For Home2, although the I/O arrival rate is only about a
half of Financial1, its write requests dominate the first
5000 s, so it takes more migration time, and longer response
time than Financial1.

PBM and GSR only migratem=ðnþmÞ of all data blocks,
therefore the migration time is significantly shorter than
ALV and MD.

The experimental results show that PBM can reduce the
migration time by up to 91.83 percent, with an average time
reduction of 73.6 percent across all experiments, compared
to MD. On average, PBM can reduce migration time by
68.3 percent and 10.1 percent, compared to ALV and GSR
respectively.

3.2 Performance in Migration
In this section we compare the performance in the
migration process. While outer I/Os can affect the migra-
tion time, the migration operation also affects the I/O
response time. We measure the response time in different
traces with different n and m. Fig. 9 shows our expansion
methods affect less outer I/O requests than MD. Generally,
we can trade off the migration time for the I/O response
time by adjusting the occurrences of migration. As described
above, we decide to migrate a group when the I/O queue
does not have enough requests. In our experiments, we
set this threshold number to 64. If it is larger than 64, the
migration time will be longer, but the response time will
be shorter. Such influences are reversed if this number is
smaller than 64.

The experimental results show that in the migration
process, PBM and GSR have shorter outer I/O requests
response time than the other two. On average, PBM can
reduce response time by 19.5 percent and 8.1 percent,
compared to MD and ALV respectively.

3.3 Performance after Migration
The block layout of a RAID expanded using PBM differs
from standard RAID-5. In particular, we do not preserve
a strict round-robin order in redistributing data and parity
blocks. Specifically new blank blocks and pre-existing
blocks are interleaved without any order in each stripe.
Thus a large request that traverses the striping unit
sequentially might visit the same disk twice sooner than
a standard RAID-5. Hence in this section we evaluate the
storage performance, in terms of the average response
time, after the RAID is successfully expanded.

We compare the performance of RAID-5 expanded via
PBM with that using MD or GSR. Note that after the
expansion via MD, the new RAID is a standard RAID-5
with more disks (The same is true for ALV). Fig. 10 compares
the performance after m disks are successfully added into
an existing RAID-5 with n disks.

A large write may be split into multiple small writes(see
Appendix C in supplementary file available online), which
negatively impacts the performance. In some scenarios,
however, our layout of blocks can positively influence the
performance. As Fig. 11 shows, when a request needs to
write blocks 3, 4, and 5, for our layout the parity block P1

should be read, recalculated and written, thus in total
8 I/Os occur. In standard RAID-5 layout, however, P0 and
P1 should both undergo a read-modify-write process,
yielding 2 more I/Os than PBM, hence a longer response
time. In addition, blocks 3 andP1 cannot be read and written
at the same time, thus parallelism is reduced. Fig. 10 shows
that the performance degradation can be positive or nega-
tive. The average increase of response time is 1.83 percent.

Since GSR remaps the data blocks, two data blocks
having consecutive address may reside at different phys-
ical addresses on two disks, or even at non-neighboring
addresses on the same disk. This is the reason why GSR
needs more response time than the other two methods in
most cases. Our experiments show that on average, the

Fig. 8. Migration time comparison. (a) n ¼ 3, m ¼ 1; 2; 3. (b) n ¼ 4, m ¼ 1; 2; 3. (c) n ¼ 5, m ¼ 1; 2; 3; 4.

TABLE 4
Trace Characteristics

MAO ET AL.: A NEW PARITY-BASED MIGRATION METHOD TO EXPAND RAID-5 1951

response time of GSR is 5.02 percent more than using
standard RAID-5.

4 RELATED WORK

Many studies have been conducted to expand an existing
RAID, which can be classified into three categories: the
ones that strictly preserve the round-robin order for all
data and parity blocks, the ones that may violate the round-
robin order occasionally, and the ones that place data and
parity blocks randomly without any specific order.

4.1 Preserving a Round-Robin Order
Gradual assimilation [8] is a technique to add new disks
to RAID-5 in an online manner to avoid downtime. It
takes advantage of increasingly more storage idle times
(due to added new disks) to reconstruct data on both
old and new disks, stripe by stripe. The new disks become
gradually available to serve user requests as the expansion
proceeds.

SLAS [3] is a technique that improves the GA algorithm.
It deploys reordering window and sliding window to
control data migration.

ALV applies the basic idea of SLAS on RAID-5 [6].
Similarly to SLAS, ALV migrates the blocks in a sliding
window, but it also recalculates the parity blocks in RAID-5.
ALV has the same disadvantage as SLAS, that is, they both
migrate almost all the data. According to [6], ALV can save
redistribution time by at most 35.33 percent compared with
MD-Reshape, while our method can save 31.39 percent of
the migration time compared with MD-Reshape in the
worst case.

FastScale [15] is recently proposed to solve the problem
of migrating a large amount of data for RAID-0. It selects

certain blocks to migrate and can achieve the minimal
data migration. However, FastScale cannot deal with
RAID-5 yet.

It has also been proposed to use the spare space of
current RAID or additional disks to expand RAID in an
online fashion [16]. This method uses spare space, includ-
ing the spare space in the original disks or new spare disks,
to accommodate incoming write requests. Data migration
and new write requests operate separately. However, if
the current RAID does not have enough spare space or
no disks can accommodate incoming write requests, the
expansion will fail, and more operations need to be done
to guarantee data consistency.

Linux provides a tool named Multi-Device (MD)
Reshape Tool [1] to support online capacity expansion. It
performs well in round-robin stripped storage systems,
including RAID-5. When adding m disks to the original
RAID with n disks, MD reads mþ n� 1 blocks, recalcu-
lates the parity, and then writes blocks and parity as a
new stripe to the new RAID.

All of these methods which focus on RAID-5 move
almost all the data blocks to reconstruct the RAID, so the
expansion process is very slow.

4.2 Maintaining a Semi-Round-Robin Order
One patent proposed by Legg [17] aims to eliminate the
need to rewrite the original data blocks and parity blocks
on old disks during expansion. The key idea is to initialize
new data blocks such that the exclusive-or of all blocks in
a full stripe, including the parity block, is zero. The major
disadvantage is that data and parity blocks are not evenly
distributed among all disks. In addition, it has a large
overhead since it requires a read and a write of every data
block on the old disks.

Fig. 9. Traces’ response time comparison. (a) n ¼ 3, m ¼ 1; 2; 3. (b) n ¼ 4, m ¼ 1; 2; 3. (c) n ¼ 5, m ¼ 1; 2; 3; 4.

Fig. 10. Performance degradation after migration.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20141952

Another patent developed by Corbett et al. [18] redis-
tributes the parity blocks in a special pattern such that
there is no need to recalculate parity or to move any data
block when new disks are added. This scheme only works
efficiently for arrays with a small number of disks, since a
very large spare storage space is required for reconstruc-
tion when there are a large number of disks.

Yet another patent held by Hetzler [19] proposes to use
unordered steps to dynamically select data blocks from
old disks to rebuild a new stripe group on the expanded
array. The new stripe pattern differs from standard RAID-5
since a parity block might be the exclusive-or of all data
blocks in a vertical stripe or a diagonal stripe. However,
some disks might hold more parity blocks than the other
in the expanded array.

GSR [7] is a new RAID-5 scaling method. It divides all
the stripes into three categories, which are Retained OUS,
Remapped OUS and Destructed OUS, as Fig. 12 illustrated.
GSR moves minimal data after scaling, but all the parity
blocks need be recalculated. For example, in Fig. 12, all the
Qs in the right graph are the new parity blocks. Recalculat-
ing parity causes more block-writes. For Eðn;mÞ, GSR need
to write 1=ðnþmÞmore blocks than PBM, and its migration
and user response time are worse than PBM. Moreover,
GSR cannot perform multiple expansions.

4.3 Migrating Pseudo-Randomly
Random allocation methods, such as SCADDAR [20], [21],
use a pseudo-randomized generator to generate a random
number x for each block, and then place this block on disk
xmodN , where N is the total number of disks. They do
not need a directory system to keep track of the location of
each block, because the same random number generator
and the same seed are used for each block. Specifically,
file names are used as the seed. When new disks are added,
the random number generated for a block is mapped to a
new number in a special way so that this number represents
the disk on which this block resides after expansion. This
approach requires file system level information that is
typically not available at the RAID controller level. Thus
although it is suitable for expanding the storage capacity
of a server, it is challenging to use this method to expand
a RAID.

5 CONCLUSION AND FUTURE WORK

This paper proposes a new method to expand the capacity
of an existing RAID-5 by adding new disks. This method,

called the parity-based migration (PBM), only migrates
blocks that form a special parallelogram with one side
consisting of only parity blocks. PBM is optimal in terms of
the amount of migration data between new disks and old
disks. Specifically, when adding m disks into an n-disk
RAID-5, PBM only needs to migrate the minimal fraction
of data, i.e., m=ðnþmÞ, during the expansion process.
Compared with the widely-used Linux toolkit MD-Reshape,
PBM can save n=ðnþmÞ of data migration and thus can
significantly reduce the negative impacts on the applica-
tion performance during expansion. Furthermore, during
the expansion, there is no need to recalculate the parity
blocks unless a data block is updated. PBM also differs
from standard RAID-5 in terms of data layout after migra-
tion. Data blocks are redistributed on all disks in a semi-
round-robin order but new data and old data might be
interleaved. However, experimental results show that the
performance penalty incurred after migration is very
small, less than 5 percent in most cases, with an average
of 1.83 percent in response time.

There are three major limitations in PBM. First, for any
n and m, the expanded RAID does not have the standard
RAID-5 round-robin layout. The new layout combines
new data and old data into one stripe, and new data can
be stored anywhere on the disk, from low track to high
track. Considering that the new data are likely to be
accessed frequently, this kind of data layout can cause
more seek time. Secondly, when a RAID-5 is expanded
multiple times consecutively, to uniformly distribute data
among all disks, PBM requires the number of new disks
to be equal to the number of existing disks, i.e., m ¼ n.
Thirdly, the migration process of PBM is more negatively
affected than MD if user requests are very busy. A
dynamically adjusted migration granularity might be
helpful to reduce such an impact. In the near future, we
will address these three limitations.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable insights that have improved the quality
of the paper greatly. This work supported by the National
Basic Research Program (973) of China (No. 2011CB302303),

Fig. 11. Case of positive impact. Left graph is data layout after migration
with PBM, and right graph is standard RAID-5 data layout.

Fig. 12. Data layout of GSR.

MAO ET AL.: A NEW PARITY-BASED MIGRATION METHOD TO EXPAND RAID-5 1953

the National Natural Science Foundation of China
(No. 60933002), and NSF under the grant No. 61300047 and
the Fundamental Research Funds for the Central Universities’
HUST2012QN101. Any opinions, findings, and conclusions
or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of
the National Science Foundation. J. Wan is the correspond-
ing author.

REFERENCES

[1] N. Brown, Online RAID-5 Resizing. Drivers/MD/Raid5.C in the
Source Code of Linux Kernel 2.6.18, Sept. 2006. [Online]. Available:
http://www.kernel.org/

[2] J.L. Gonzalez and T. Cortes, ‘‘Increasing the Capacity of RAID5
by Online Gradual Assimilation,’’ in Proc. Int’l Workshop I/OsV
SNAPI, 2004, pp. 17-24. [Online]. Available: http://portal.acm.org/
citation.cfm?doid=1162628.1162631

[3] G. Zhang, J. Shu, and W. Xue. (2007, Mar.). SLAS: An Efficient
Approach to Scaling Round-Robin Striped Volumes. ACM Trans.
Storage [Online]. 3(1), p. 3. Available: http://portal.acm.org/
citation.cfm?id=1227838

[4] E. Lee and R. Katz. (1993, June). The Performance of Parity
Placements in Disk Arrays. IEEE Trans. Comput. [Online]. 42(6),
pp. 651-664. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=277289

[5] E.K. Lee and R.H. Katz, ‘‘Performance Consequences of Parity
Placement in Disk Arrays,’’ in Proc. 4th Int’l Conf. Architect.
Support Programm. Lang. Oper. Syst., 1991, pp. 190-199. [Online].
Available: http://portal.acm.org/citation.cfm?id=106992

[6] G. Zhang, W. Zheng, and J. Shu. (2010, Mar.). ALV: A New Data
Redistribution Approach to RAID-5 Scaling. IEEE Trans. Comput.
[Online]. 59(3), pp. 345-357. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=5276795

[7] C. Wu and X. He, ‘‘GSR: A Global Stripe-Based Redistribution
Approach to Accelerate RAID-5 Scaling,’’ in Proc. 41st Int’l Conf.
Parallel Process., 2012, pp. 460-469.

[8] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. (1996, Feb.). The
HP AutoRAID Hierarchical Storage System. ACM Trans. Comput.
Syst. [Online]. 14(1), pp. 96-108. Available: http://portal.acm.
org/citation.cfm?id=225539

[9] J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quantita-
tive Approach. San Francisco, CA, USA: Morgan Kaufmann, 2003.

[10] A. Verma, R. Koller, L. Useche, and R. Rangaswami, ‘‘SRCMap:
Energy Proportional Storage Using Dynamic Consolidation,’’ in
Proc. 8th USENIX Conf. FAST, 2010, pp. 267-280. [Online].
Available: http://www.usenix.org/events/fast10/tech/full_
papers/verma.pdf

[11] FIU-Home2 Block I/O Trace, Storage Networking Industry
Association, SNIA 2010. [Online]. Available: http://iotta.snia.
org/traces/414

[12] D. Narayanan, A. Donnelly, and A. Rowstron. (2008, Nov.).
Write Off-Loading: Practical Power Management for Enterprise
Storage. ACM Trans. Storage [Online]. 4(3), pp. 1-23. Available:
http://portal.acm.org/citation.cfm?doid=1416944.1416949

[13] MSR Cambridge Traces, Microsoft Research LTD, 2007. [Online].
Available: http://iotta.snia.org/tracetypes/3

[14] SPC-OLTP Application I/O, Storage Performance Council,
University of Massachusetts, U Mass Trace Repository, 2007.
[Online]. Available: http://traces.cs.umass.edu/index.php/
Storage/Storage

[15] W. Zheng and G. Zhang, ‘‘Fastscale: Accelerate RAID Scaling
By Minimizing Data Migration,’’ in Proc. 9th USENIX Conf. FAST,
2011, p. 11. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1960475.1960486

[16] Expansion of RAID Subsystems Using Spare Space with
Immediate Access to New Space, by C. Franklin and J.T. Wong.
(2006, June 19). U.S. Patent 20030 115 412. [Online]. Available:
http://www.freepatentsonline.com/y2003/0115412.html

[17] Method of Increasing the Storage Capacity of a Level Five RAID
Disk Array by Adding, in a Single Step, a New Parity Block and
n-1 New Data Blocks Which Respectively Reside in a New
Columns, by C.B. Legg. (1999, May 9). U.S. Patent 6 000 010.
[Online]. Available: http://www.patentgenius.com/patent/
6000010.html

[18] Semi-Static Distribution Technique, by P.F. Corbett, S.R. Kleiman,
and R.M. English. (2007, Feb. 27). U.S. Patent 07 185 144. [Online].
Available: http://www.patentgenius.com/patent/6000010.
html

[19] Data Storage Array Scaling Method and System with Minimal
Data Movement, by S.R. Hetzler. (2008, Nov. 6). 20080 276 041.
[Online]. Available: http://www.faqs.org/patents/app/
20080276041

[20] A. Goel, C. Shahabi, S. Yao, and R. Zimmermann, ‘‘SCADDAR:
An Efficient Randomized Technique to Reorganize Continuous
Media Blocks,’’ in Proc. 18th Int’l Conf. Data Eng., 2002, no. 39,
pp. 473-482. [Online]. Available: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=994760

[21] S.-Y. D. Yao, C. Shahabi, and P.-K. Larson. (2005, Apr.). Hash-
Based Labeling Techniques for Storage Scaling. VLDB J. [Online].
14(2), pp. 222-237. Available: http://www.springerlink.com/
index/10.1007/s00778-004-0124-6

Yu Mao received the BS degree in computer
science from Huazhong University of Science
and Technology, China, in 2002, and the MS
degree in University of South China, China, in
2007. He is currently pursuing the PhD degree in
the Department of Computer Science, Huazhong
University of ScienceandTechnology,China.His
research interests include storage, distributed
system, parallel storage etc.

Jiguang Wan received the BS degree in com-
puter science from Zhengzhou University, China,
in1996, and theMSandPhDdegrees in computer
science from Huazhong Univerisity of Science
and Technology, China, in 2003 and 2007,
respectively. He is currently an Associate Pro-
fessor at Wuhan National Laboratory For Opto-
electronics, Huazhong University of Science
and Technology, China. His research interests
include computer architecture, networked stor-
age system, I/O and data storage architectures,

and parallel and distributed system.

Yifeng Zhu received the BSc degree from the
Huazhong University of Science and Technolo-
gy, Wuhan, China, in 1998, and the MS and PhD
degrees from theUniversity of Nebraska, Lincoln,
in2002and2005, respectively.He isanassociate
professor at the University of Maine. His research
interests include parallel I/O storage systems,
and energy-aware memory systems. He served
as the program committee of international con-
ferences, including ICDCSandICPP.Hereceived
the Best Paper Award at IEEE CLUSTER 07. He

is a Member of the ACM, the IEEE, and the Francis Crowe Society.

Changsheng Xie received the BS and MS
degrees in computer science from Huazhong
University of Science and Technology, China, in
1982 and 1988, respectively. Presently, he is
a Professor in the Department of Computer
Engineering at Huazhong University of Science
and Technology (HUST), China. He is also the
Director of the Data Storage Systems Laboratory
of HUST and the deputy director of the Wuhan
National Laboratory for Optoelectronics. His
research interests include computer architec-

ture, disk I/O system, networked data storage system, and digital media
technology. He is the vice chair of the expert committee of Storage
Networking Industry Association (SNIA), China.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20141954

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

