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ABSTRACT
Localization with noisy distance measurements is a critical
problem in many applications of wireless sensor networks.
Different localization algorithms offer different tradeoffs
between accuracy and hardware resource requirements. In
order to provide insight into selecting the best algorithm
that optimizes this tradeoff, this paper evaluates the
accuracy, memory, and computational requirements of two
approaches that may be taken in localization: neural net-
works and Kalman filters. In this paper, we quantitatively
compare the localization performance of a Multi-Layer
Perceptron (MLP) neural network, PV, and PVA models of
the Extended Kalman filter. Our experimental results show
that the MLP neural network has weaker self-adaptivity
than the Extended Kalman filters; however, the MLP can
potentially achieve the highest localization accuracy and
requires the least amount of computational and memory
resources.

KEY WORDS
Localization, Sensor Networks, Neural Networks, and
Kalman

1 Motivations

Localization arises repeatedly in many location-aware ap-
plications such as navigation, autonomous robotic move-
ment, and asset tracking [1, 2]. Analytical localization
methods include triangulation and trilateration. Triangula-
tion uses angles, distances, and trigonometric relationships
to locate the object. Trilateration, on the other hand, uses
only distance measurements to identify the position of an
object. Figure 1 gives a simple example of this method.
Using three reference points Si (i = 1, 2, 3) with known
coordinates and distances di (i = 1, 2, 3) to the target ob-
ject, the object can be uniquely located at the intersecting
point of the three circles.

However, in the event that the distance measurements
are noisy and fluctuate, the task of localizing becomes dif-
ficult. This can be seen in Figure 2. With fluctuating dis-
tances, regions within the circles become possible locations
for the tracked object. In this case, rather than the object be-
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Figure 1. Trilateration Figure 2. Trilateration with Noise

ing located at a single point at the intersection of the circles
as in Figure 1, the object can be located anywhere in the
dark shaded region in Figure 2.

This uncertainty due to measurement noises renders
analytical methods almost useless. Localization methods
capable of accounting for and filtering out the measurement
noises are desired. Which is why neural networks are very
promising in this area.

The method by which the distance measurements are
carried out determines the sources of noise in these mea-
surements. Typically devices known as “beacons” are
placed at known locations and emit either radio or acous-
tic signals or both. It is possible for a “mobile node” to
determine the distance to a beacon by using properties of
these signals such as the signal strength of the RF signal,
Received Signal Strength (RSS) [3]. Other methods utilize
both RF and acoustic signals by computing the time differ-
ence between an RF pulse and an acoustic pulse generated
by a beacon [4, 5, 2, 6]. RF signals travel at the speed of
light and the time it takes for a RF signal to get to a mobile
node is almost instantaneous and can be considered zero
while the time it takes for an acoustic signal such as ultra-
sound is much longer. In the case of the Crickets [2, 4],
the RF and ultrasound signals are emitted simultaneously
by the beacons. The mobile node computes the distance by
using the time it takes for the first instance of the acous-
tic pulse to reach the sensor after the RF signal. However,
wave reflection is common to both RF and acoustic signals
and it is possible that the mobile node erroneously identi-
fies a pulse due to the reflected wave of the original pulse as
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a new pulse [5]. This, of course, results in skewed distance
measurements.

Another consideration that must be made when select-
ing a localization method is the amount of computation that
is required. It must be borne in mind that these methods
will be implemented on embedded systems with limited
computation and memory resources. Different methods
with different levels of accuracy require varying amounts
of resources. A trade-off must be made that balances the
timely computation of the position and the desired accu-
racy necessary for the application. Disregard to this princi-
pal may result in the time required to compute the position
exceeding the time when the information is needed.

In this paper, the accuracy, robustness, and efficien-
cies of localization utilizing Kalman filters and neural net-
works will be explored. The contributions of this paper are
the utilization of a Multi-Layer Perceptron (MLP) neural
network for localization, which to our knowledge has not
been done before. We will also compare the performance of
the neural network with two variants of the Kalman filter.
In addition, we will also examine the computation com-
plexity and memory usage of all of these methods.

The rest of the paper is organized as follows. Sec-
tion 2 describes relevant localization methods proposed
earlier. Section 3 introduces the principals of Kalman filters
and neural networks. The experiment by which these meth-
ods will be compared is given in Section 4. The results will
be discussed in Section 5, and concluding comments will
be made in Section 6.

2 Related Work

The Active Badge Location System [6] is often credited
as one of the earliest implementations of an indoor sensor
network used to localize a mobile node [2]. Although this
system, utilizing infrared, was only capable of localizing
the room that the mobile node was located in, many other
systems based on this concept have been proposed.

The Bat system [5, 7], much like the Active-Badge
System, also utilizes a network of sensors. A central con-
troller broadcasts an RF query to a mobile node and resets
the serially linked receivers at the same time. The mobile
node responds by emitting an ultrasonic pulse which are
picked up by the receivers. The time it takes for the ultra-
sound pulse to reach individual receivers indicates the dis-
tance the mobile node is from the receivers and the position
of the mobile node can then be trilaterated.

Researchers at MIT have utilized similar concepts
from the Bat System in their Cricket sensors, albeit using
a more decentralized structure. However, one draw back
to the Crickets is the risk of collisions during the RF and
Ultrasound transmissions between different beacons. The
Cricket Location System [4] uses a hybrid approach in-
volving the use of an Extended Kalman filter, Least Square
Minimization to reset the Kalman filter during the Active
state, and Outlier Rejection to eliminate bad distance read-
ings.

Other researchers at MIT have proposed another
method of localization utilizing the Cricket system exploit-
ing properties of robust quadrilaterals to localize an ad-hoc
collection of sensors without the use of beacons [8].

It is also possible to localize optically as in the Hi-
Ball head tracking system [9]. Arrays of LEDs flash
synchronously, and cameras capture the position of these
LEDs. The system utilizes information about the geometry
of the system and computes the position.

Localization using signal strength of RF signals has
been studied extensively, [10, 11, 12, 13] are all examples
of methods that were devised using this approach. Neural
networks, however, have not been used extensively in this
area. There has been some research conducted by Chenna
et al in [14]. However, Chenna et al, restricted themselves
to comparing Recurrent Neural Networks (RNN) to the
Kalman Filter. We would like to go further and compare the
MLP neural network with the performance of the Kalman
filters.

3 Introduction to Localization Algorithms

3.1 Kalman Filter

One technique of localization is with the use of the Kalman
Filter (KF) [15]. The Kalman filter is an iterative approach
that uses prior knowledge of noise characteristics to ac-
count for and filter out the noise. However, problems arise
when attempting to model noise. Attempts at measuring
noise are only approximations and do not indicate the real
distribution of the noise. The Kalman filter can only be
used for linear stochastic processes and for non-linear pro-
cesses the Extended Kalman Filter (EKF) [16, 17] must be
used. The assumption with these two methods is that the
process and noise measurements are independent, white,
and with normal probability.

There are different parameters that the EKF can use
in modeling the trajectory of a moving object. It is possible
to model the motion of an object using just the state of the
X and Y position to obtain the P Model. The velocity can
also be incorporated in the state in addition to the position
to form the PV model. Of course, if acceleration is included
also, this results in the PVA model.

The distances returned by the sensors can be related
to the position of the object using the distance formula (1):

di =
√

(x − xi)2 + (y − yi)2 (1)

where i = 1, 2, 3
A way of modeling motion is by setting up a linear

system composed of the kinematics equations for each di-
mension of tracked motion. The following example of a
linear system describes an objects two-dimensional motion
using the position, velocity, and acceleration (PVA).
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State equation:⎡
⎢⎢⎢⎢⎢⎢⎣

xk+1

yk+1

ẋk+1

ẏk+1

ẍk+1

ÿk+1

⎤
⎥⎥⎥⎥⎥⎥⎦

= A

⎡
⎢⎢⎢⎢⎢⎢⎣

xk

yk

ẋk

ẏk

ẍk

ÿk

⎤
⎥⎥⎥⎥⎥⎥⎦

+ B

[
uxk

uyk

]
+ Q (2)

The state transition matrix A arises from the respec-
tive kinematics equations. For a PVA model, A becomes:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 T 0 1
2T 2 0

0 1 0 T 0 1
2T 2

0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

uxk and uyk are the inputs to the system, and B is the input
matrix. However, the input kinematics parameters of the
moving object to be tracked are not known so the uk terms
and B can be dropped from the linear system. Also, the
inputs to this system are distance measurements zk. These
distance measurement will be used to update the state of
the object as given in step 4 of the Kalman Filter Equations
as given in Algorithm (1).

Q is the process noise covariance matrix that accounts
for the unmodeled factors of the system that will be treated
as random noise. For example, in the systems of equations
above, while the change of velocity is accounted for by ac-
celeration the change in acceleration is not considered. The
contribution of this effect to the state is accounted for as
random noise. See [18] for a more in depth discussion. In
this example, q is the standard deviation of the acceleration
noise as given in [19]. Q is given as follows:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δT 5

20 0 δT 4

8 0 δT 3

6 0
0 δT 5

20 0 δT 4

8 0 δT 3

6
δT 4

8 0 δT 3

2 0 δT 2

2 0
0 δT 4

8 0 δT 3

2 0 δT 2

2
δT 3

6 0 δT 2

2 0 qδT 0
0 δT 3

6 0 δT 2

2 0 qδT

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)

As described in [17], the three measured distances dk

where k = 1, 2, 3 given the locations of the three beacons
(xi,yi) where i = 1, 2, 3 can be used to relate the location
of the object (xk,yk) to the distances using the following
equation:

di,k =
√

(xk − xi)
2 + (yk − yi)

2 + d̃ik (5)

where d̃ik is the error in the measurement. The equation
(5) can be expressed as (6).

⎡
⎣ d1k

d2k

d3k

⎤
⎦ = H

⎡
⎢⎢⎢⎢⎢⎢⎣

xk

yk

ẋk

ẏk

ẍk

ÿk

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎣ d̃1k

d̃2k

d̃3k

⎤
⎦ (6)

where H is the measurement matrix that relates the current
state to the output. Since the output equations (5) are non-
linear, the Jacobian needs to be used.

H =

⎡
⎢⎣

∂d1
∂x

∂d1
∂y 0 0 0 0

∂d2
∂x

∂d2
∂y 0 0 0 0

∂d3
∂x

∂d3
∂y 0 0 0 0

⎤
⎥⎦ (7)

where

∂di

∂x
=

x − xi√
(x − xi)2 + (y − yi)2

(8)

∂di

∂y
=

y − yi√
(x − xi)2 + (y − yi)2

(9)

for i = 1, 2, 3
Using the formulation of the problem as described

above, the following equations [15] can be evaluated itera-
tively to track an object. The distance measurements zk are
used in step 4 to update the state estimate.

Algorithm 1 Kalman Filter Equations
1: Project the state ahead: Xk

− = AXk−1 + BUk

2: Project the error covariance ahead: Pk
− = APk−1AT + Q

3: Compute the Kalman gain: Kk = Pk
−HT (HPk

−HT + R)−1

4: Update estimation with measurements: Xk = Xk
− + Kk(zk −

HXk
−)

5: Update the error covariance: Pk = (I − KkH)Pk
−

6: Repeat and go to Step 1.

In this paper, the performance of both the PV and PVA
EKF will be compared. The benefit of one over the other
depends upon the characteristics of the motion of the ob-
ject. A system modeled using PV will tend to work when
velocity is mostly constant. PVA on the other hand works
better when the acceleration is mostly constant [18].

3.2 Neural Networks

Neural networks are modeled after biological nervous
systems and are a network of interconnections between
nodes called “neurons” with activation functions. Different
classes of neural networks can be obtained by varying the
activation functions and the structure of the weighted in-
terconnections between the neurons. The MLP network is
“trained” to approximate a function by repeatedly passing
the input through the network. The weights of the intercon-
nections are modified based on the difference between the
desired output and the output of the neural network. The fi-
nal weights of the MLP network is entirely dependent upon
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the initial weights. Finding the set of weights that result in
the best performance is ultimately through trial and error.
Nevertheless, the power of both MLP neural networks lies
in the fact that they can be used to model very complicated
relationships easily. Detailed description is given in [20].

One major benefit of a neural network is that prior
knowledge of the noise distribution is not required. Noisy
distance measurements can be used directly to train the net-
work with the actual coordinate locations. The neural net-
work is capable of characterizing the noise and compensat-
ing for it to obtain the accurate position.

4 Experiment Design

We will explore the two approaches described using MIT’s
Cricket sensors [21]. However, as was discussed, the use
of ultrasound introduces noise. The distance measurements
returned by the sensors fluctuate often. During our experi-
ment, the measured distances used for training and testing
varied by as much as 32.5 cm. The distances from each of
the beacons to the mobile node will be input to the MLP
and RBF neural networks and the PV and PVA model of
Kalman filters. Each will output positions that it estimates
corresponds to the distance measurements. We will simu-
late the two dimensional motion of an object by collecting
distance measurements of the mobile node while moving it
in a network composed of Cricket sensors.

However, before any simulation can take place, train-
ing data must be collected to train the neural network. A
tile floor provided a very regular grid of 30 cm in size upon
which the sensors could be accurately located.

Figure 3. Experiment Test Bed

Using a grid of 300 cm × 300 cm, beacons were
placed at positions (0, 300), (300, 300), and (300, 0) of the
grid as shown in Figure 4. The training data was collected
by placing the mobile node at each intersection of the tiles
and collecting distance measurements to each of the three
beacons S1, S2, and S3. The distance measurements to
the beacons fluctuated constantly, and by collecting more
than one set of distances to each of the beacons, we were
able to capture the noise in the system. By training the
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Figure 4. Locations of Training and Testing Data Collected

neural networks with these multiple sets of fluctuating dis-
tances to beacons for each position, the accuracy of the neu-
ral networks improved as it became capable of “filtering”
out the noise in the distance measurements–just as the PVA
Kalman filter utilizes the standard deviation of the acceler-
ation noise to “correct” its estimates. The known locations
for which the training distance measurement were collected
are marked using ’+’ signs in Figure 4. For each of the 121
position, several sets of distances measurements were col-
lected resulting in a total of 1521 sets of distance measure-
ments for training the networks.

Once the training data was collected, the testing data
was collected by moving the mobile node through the sen-
sor network following a more random path. Again the dis-
tances, for each known positions were collected. This is
indicated using the “∗” sign in Figure 4. This data allows
us to test the accuracy of the localization of the neural net-
works and the Kalman filters.

In the case of the MLP neural network, the distances
will be input to the network and it will output the estimate
of the X and Y coordinates location for those distances. In
the case of the Kalman filters, the distances will be input
as zk in step 4 of the Kalman filter equations and used to
update the state estimate as mentioned before.

The MLP neural network is a two-layer network com-
posed of nine nodes in the first layer and three nodes in the
output layer. The nodes in the first layer use the hyperbolic
tangent sigmoid activation function, and the second layer
uses a linear activation function. This network was trained
in MATLAB for 200 epochs with a training goal of 0.001
error.

The training set was also used to compute the mea-
surement and process noise required for the Kalman filters.
The measurement noise was obtained by taking the vari-
ance of the difference between the actual and estimated po-
sitions that were obtained. The process noise values for the
Kalman filters were obtained by calculating the minimum
distance error between the estimated and actual positions
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for a range of process noise components X and Y . In other
words, the process noise values that resulted in the smallest
distance errors between the estimated and actual positions
were selected as the process noise parameters.

5 Results and Discussions

5.1 Performance Comparison

Figures 5, 8, and 12 show the localization accuracy of the
MLP, PV, and PVA methods respectively. As Table 1 indi-
cates, the MLP neural network has the least distance error
per estimate and hence the best localization performance.
This is followed by the PV model of the Kalman Filter, and
finally the PVA model of the Kalman Filter.

Method Distance Error RMSE Net
per Estimate (X , Y ) RMSE

MLP 5.726 (5.905, 4.693) 7.543
PV 8.771 (7.276, 7.537) 10.476
PVA 9.613 (8.159, 7.937) 11.382

Table 1. Comparison of Localization Errors (cm)

The use of the Root Mean Square Error (10) also
reveals that the MLP neural network has the best perfor-
mance.

RMSE =

√∑
(Actual − Estimated)2

Number of Samples
(10)

Net RMSE =
√

XRMSE
2 + YRMSE

2 (11)

One characteristics of the RMSE is that it is biased to-
wards large errors since large errors squared result in larger
values resulting in a greater contribution of error. This in-
teresting characteristic will become apparent in the analysis
that follows. Figures 7, 10, and 14 reveal the distribution
of the magnitude of error during the entire testing data. It
is interesting to note that the neural networks have a higher
percentage of errors of less than 10 cm. Whereas, the Ex-
tended Kalman filters have a lower percentage of errors, but
most of these errors are greater than 10.

It seems that the neural network tends to make a lot of
little mistakes, whereas the Kalman filters make fewer mis-
takes, but when they do, their mistakes are large. This may
be due to the process noise of the simulated motion of the
object not adhering to the assumptions of Gaussian charac-
teristics as discussed in Section 3. In addition, Figures 6,
9, and 13 reveal the location and magnitude of errors in
the testing area as shown in Figure 4. It is interesting to
note that a good portion of the error for all of the methods
seems to be along the edge of the testing boundary in the
vicinity of the beacons. This may be due to the fact that the

use of ultrasound on the Cricket sensors results in large in-
terferences between signals close to the beacons. It is also
interesting to note that the Kalman filters display relatively
large errors than the neural networks at the edges of the
other boundaries as well. This may be due to the fact that
the Kalman filters iteratively close in on the localized po-
sition. At the boundaries, where the object’s motion takes
a sudden turn, the Kalman filter’s estimates require a few
iterations before it can “catch up” with the object, resulting
in larger errors.
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Figure 11. Simulated Path

In addition to the above analysis, the path of a moving
object based on kinematics was simulated. Distances be-
tween beacons located at (300, 0), (300, 300), and (0, 300)
and a “moving” mobile node were computed. These dis-
tances were fed to each of the different localization meth-
ods and their performance was analyzed. Figure 11 depicts
the estimated path of each of these localization methods.
Table 2 reveals that the MLP neural network has the best
performance, followed by the PV model Kalman Filter, and
PVA model.

Method Dist Error RMSE Net RMSE
Per Estimate (cm) RMSE

MLP 16.568 (13.910, 11.594) 18.108
PV 23.359 (16.810, 17.059) 23.950
PVA 24.026 (17.349, 17.462) 24.615

Table 2. Error Per Estimate and RMSE for Simulated Path

5.2 Computation Requirement Comparison

Thus far, only the accuracy of the localization methods has
been examined without any discussion of the computation
requirements associated with them.

As mentioned before, these localization methods will
be implemented on an embedded system with limited capa-
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Figure 5. Tracking trajectory of MLP
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Figure 6. Localization errors of MLP
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Figure 7. Error distribution of MLP
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Figure 8. Tracking trajectory of PV
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Figure 9. Localization errors of PV
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Figure 10. Error distribution of PV

bilities. Based on the application, an appropriate localiza-
tion method must be used that balances accuracy with the
capabilities of the system.

The following analysis utilizes the number of float-
ing point operations as a metric to compare the different
methods. For simplicity of presentation, this analysis as-
sumes that the embedded system has native floating point
capabilities and does not rely on integer computations to
mimic floating point operations. Further, this analysis only
accounts for steady-state computation, meaning the initial-
ization and setup computations are not considered. Differ-
ent localization applications may have different initializa-
tion and setup requirements. It is assumed that the neu-
ral networks are trained before-hand and the appropriate
weights and biases are available. In the case of the Ex-
tended Kalman Filter, the listed operations are those that
are associated with the set of iterative equations as de-
scribed in Algorithm (1).

Method Number of Floating Point Operations
MLP 153
PV 884
PVA 2220

Table 3. Comparison of Floating Point Operations of Lo-
calization Methods Per Estimate

As Table 3 reveals, the MLP is the least computation-
ally intensive. It is followed by the PV and PVA Kalman
Filters. These results as described in Table 3 provide an in-
sight into the workings of these localization methods, how-
ever, it is very difficult to generalize these results.

A two layer MLP can be implemented using two sets
of nested loops. The MLP has complexity O(m2) where
m is the greatest number of nodes in the two layers. How-
ever, given the fact that the MLP in use in this experiment
contains nine nodes in the first layer, and only two nodes
in the second layer, O(m2) is an extreme overestimation of
the complexity.

The Kalman filter equations as described in Algo-
rithm (1) involve many matrix multiplications and an in-
verse operation for computing the Kalman gain K. These
two operations have complexity O(k3) and as a result the
Kalman filter is also of complexity O(k3) where k is the
number of parameters in the state.

It is difficult to arrive at a generalized statement com-
paring the computational complexity of these methods. It
is possible to compare the PV and PVA models. However,
there are difficulties in trying to compare Kalman filters
with the neural network. This is because there are no fea-
tures that are shared between these two families of local-
izing methods. The Kalman filter utilizes a linear system
to arrive at the localization estimates, whereas the neural
networks localize by evaluating the inputs by tweaking it
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Method Order of Magnitude Comment
MLP O(m2) m is the greater number of

nodes in the two layers.
PV O(k3) k is the number of elements

in the state variable.
PVA O(k3) k is the number of elements

in the state variable.

Table 4. Comparison of computational complexity between
localization methods

using a set of activation functions and weights. Neural net-
works are a more amorphous method of modeling where,
in the end, the arrival of the best network for the application
is obtained through trial and error.

Another reason why it is difficult to arrive at a gen-
eralized statement comparing the Kalman filters and the
neural networks is because, the scalability of the neural
networks is not known. If the area of localization in-
creased from the 300 × 300 cm grid as described above
to a 400 × 400 cm grid, the noise characteristics of the
distance measurements will also change. The ultrasound
signals which are used to measure distances will attenuate
differently over this larger distance. The noise character-
istic of data for this new area of localization will be dif-
ferent and may require a much larger MLP than the one
used above. Although unlikely, it is possible that this new
neural network that is required to localize in this new or
any other scenario may be more computationally expensive
than the Kalman filters. The Kalman filter does not suffer
from the same problem as the neural networks. If the size
of the localization area changed, the computation complex-
ity of the Kalman filter will not change. These are some of
the difficulties in attempting to definitively compare neural
networks with the Kalman filters.

5.3 Memory Requirement Comparison

Comparison of the memory requirements of these localiza-
tion methods is as problematic as attempting to compare
computational complexity. It is not clear at this time how
the neural networks will scale compared to the Kalman fil-
ter for different applications. In the specific experiment
carried out for this paper, the memory usage of the neu-
ral networks as compared to the Kalman filters is described
in Table 5. It should be noted that the memory usage de-
scribed here is the steady state memory, this does not take
into account any initializations that may be required for dif-
ferent applications. It is also assumed that floats are four
bytes long.

In the expressions for the two-layer neural networks,
n is the number of nodes in the first layer, p is the number of
nodes in the output layer, and m is the number of distance
readings or the number of inputs.

In the expressions for the two Kalman filters, k is the
number of elements in the state variable and m is the num-

ber of distance readings. The expressions for the memory
requirements of the Kalman filters include an additional
k2 + 2mk + m2 + m + k bytes of memory for temporary
variables.

It is interesting to note that the underlying memory
characteristics for the Kalman filters are equivalent. The
memory required by the MLP network is less than half of
that required by the PV Kalman filter.

Method Total Memory Usage Number of Bytes
MLP nm + np + 2n + 2p + m 280
PV 6k2 + 4k + 4km + 5m + m2 736
PVA 6k2 + 4k + 4km + 5m + m2 1344

Table 5. Comparison of memory requirements between Lo-
calization Methods

6 Conclusion

The experimental results indicate that among the three lo-
calization algorithms, the MLP neural network has the best
performance in terms of accuracy, computation complex-
ity, and memory usage. However, there are potential re-
training or re-design costs associated with the use of neural
networks that are not associated with the Kalman filter.

We have shown that the MLP neural network has a
weaker self-adaptivity than the Kalman filters. First, neu-
ral networks perform well only for the area in which they
have been trained. If the tracked object passes beyond the
boundaries of the area where the neural network has been
trained, the neural network will not be able to localize. Sec-
ond, when the beacons from which the distance measure-
ments have been used to train the network are moved, the
MLP neural network needs to be re-trained and there is a
possibility that the architecture of the neural network may
need to change. On the other hand, the Kalman filters do
not suffer from this problem and they can be used freely
over any area once the appropriate noise parameters have
been measured.

Compared with Kalman filter methods, the MLP neu-
ral network does have some advantages. The Kalman fil-
ters iteratively localize, correcting their estimates over time
based on the noise parameters. The MLP neural network on
the other hand localizes in a single pass of the network. The
Kalman filter uses the laws of kinematics to predict the lo-
cation of the tracked object. If the tracked object’s motion
is random and spontaneous the neural network’s ability to
localize in a single pass results in more accurate estimates
every time. The Kalman filter, however, requires several it-
erations before it begins to reach the accuracy of the MLP.

In conclusion, where noise parameters are not ex-
pected to change, the localization method using MLP neu-
ral networks may be the best option. The high accu-
racy, minimal computational and memory requirements are
highly desirable in embedded systems. If a flexible and eas-
ily modifiable method is required, then the Kalman filters
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Figure 12. Tracking trajectory of PVA
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Figure 13. Localization errors of PVA
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Figure 14. Error distribution of PVA

may be a better option. However, the decision between the
PV and the PVA model of the Kalman filter would depend
on the application and the characteristics of the motion of
the object.
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