Binary Addition

Stick with 8 bits and throw anything else away. Sometimes the results are wrong (and sometimes right even when throwing away bits).

Simple example: -1 plus -1
start on
the right

Continue

$$
\begin{array}{lllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
& 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
+ & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}
$$

\uparrow this last bit is cliscarded/ignored
Result
If
If $U_{n s i g n e d ~}$

$$
\begin{aligned}
& 255 \leftarrow||||||\mid \rightarrow-1 \\
& \begin{array}{l}
255 t+\frac{11|1| 1 \mid 1}{254} \leftarrow-\frac{1}{111|1| 10} \rightarrow-2 \quad \leftarrow \text { correct } \\
\tau_{\text {incorrect (should be } 256 \text { more than this) }}
\end{array}
\end{aligned}
$$

Binary Subtraction
Example
As with base 10 start on the right and subtract digit by digit, borrowing when needed.

Another example of this?

Another 10000100
Example $-\frac{01101101}{\sim}$ Do these together

$$
\overbrace{0}^{\text {Do }} \text { Together bier needed }
$$

$$
\begin{array}{r}
10000+010 \\
-01101101 \\
\hline 00010111
\end{array}
$$

If needed, assume there is a 9th bit that is 1 , but stick with an 8 -bit result.
Example: zero minus negative one imaginary $v^{0} 111111111 m^{n}$ now 2 with the borrow q^{+n} - bot

$$
-\begin{array}{llllllll}
11 & 1 & 1 & 1 & 1 \\
\hline 000000001 \\
\tau_{\text {ignore }} 9{ }_{2} & & 1 & 12-1=1
\end{array}
$$

Note: the $9^{\text {th }}$ bit position has a place value of $2^{9}=256$ so when results are wrong they are off by 256

