ECE 271 - Homework #5

1. For each operation, fill in the result and the flags, and for each given branch instruction state whether a branch would occur or not (give "yes" or "no")

	\$45	\$2A	\$C4	\$59	\$E7	\$AB	\$63
	-\$2A	-\$45	-\$59	-\$C4	-\$AB	-\$E7	-\$63
Result:							
NZVC flags:	0000						
BGT							
BHI							
BPL							
BNE							
BCS							
BVS							

2. After doing a subtraction, a condition branch is executed. For each of the following pairs of conditional branches, give an example of a subtraction result that would cause both conditional branches to actually branch. Answers to the first two are given as examples.

- a) BRA and BNE: 25 (any non-zero value would cause either to branch)
- b) BEQ and BNE: none (no result could cause both to branch)
- c) BPL and BNE:
- d) BPL and BEQ:
- e) BPL and BMI:
- f) BMI and BNE:
- g) BMI and BEQ:
- What conditional branch is the "opposite" of each of the following (one branches if and only if the other doesn't): Example: BVS <u>BVC</u>. BCS ____, BPL ____, BEQ ____, BGT ____, BGE ____, BHI ____, BHS ____.
- 4. Give code which will branch to location \$9000 if the result of the previous operation is zero. Assume that this code is far from location \$9000 (e.g., it is at location \$1020).

- 5. Which of the following conditional branches might with good reason follow an ADD instruction? Circle the reasonable ones. BHI, BGT, BMI, BEQ, BCC, BVC.
- 6. If you are required to write code which "loops" 100 times, you have a number of choices. Write code for each of the following variations. The first is given as an example.
 - a) Count up using a counter which "lives" in the A register

	CLRA	
LOOP1	INCA	
	CMPA	#100
	BNE	LOOP1

b) Count down using a counter which "lives" in the A register

c) Count up using a counter which "lives" in memory location \$9000.

d) Count down using a counter which "lives" in memory location \$9000.