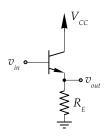

# Single Transistor Amplifiers


### Common Emitter Amplifier

Reasonable Gain. Adjustable input impedance. Relatively high output impedance. Good inverting voltage amp (If the load is known!)



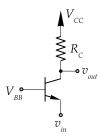
# Common Collector Amplifier

Nice voltage buffer: High  $R_{in}$  and low  $R_{out}$ . "Copies the input voltage to an unknown load".



$$V_{cc}$$

$$A_{vo} = \frac{R_E \parallel r_o}{r_e + R_E \parallel r_o} \approx 1$$


$$A_{is} = \beta + 1$$

$$R_{in} = r_\pi + (\beta + 1)(R_E \parallel r_o)$$

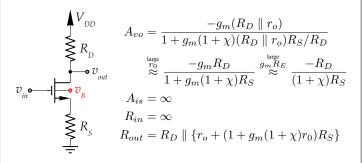
$$R_{out} = r_e \parallel R_E \parallel r_o \approx r_e$$

### Common Base Amplifier

Nice current buffer: Low  $R_{in}$  and high  $R_{out}$ . "Copies the input current to an unknown load". Also used as a noninverting voltage amp-IF you know the load, and need a low input resistance.

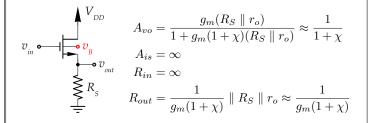


$$A_{vo} = g_m(r_o \parallel R_C)$$


$$A_{is} = \alpha \approx 1$$

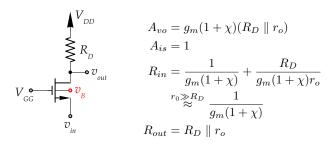
$$R_{in} = r_e + \frac{R_C}{g_m r_o} \stackrel{r_0 \gg R_C}{\approx} r_e$$

$$R_{out} = R_C \parallel r_o$$


#### Common Source Amplifier

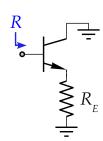
Reasonable Gain. Adjustable input impedance. Relatively high output impedance. Good inverting voltage amp (If the load is known!)




### Common Drain Amplifier

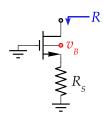
Nice voltage buffer: Infinite  $R_{in}$  and low  $R_{out}$ . "Copies the input voltage to an unknown load".




## Common Gate Amplifier

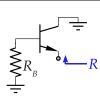
Nice current buffer: Low  $R_{in}$  and high  $R_{out}$ . "Copies the input current to an unknown load". Also used as a noninverting voltage ampif you know the load, and need a low input resistance.




(All expressions assume  $v_B$  is constant. If  $v_{BS} = 0$ , set  $\chi = 0$ .)

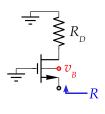
# Small-Signal Impedance Measured at Transistor Terminals




Emitter Impedances seen through the base of a BJT are *increased* by a factor of  $\beta + 1$ .

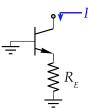
$$R \approx r_{\pi} + (\beta + 1)R_E$$




Impedances seen through the drain of a MOS-FET are *increased* by the intrinsic gain of the transistor. Use  $g'_m = g_m + g_{mb} = (1 + \chi)g_m$ :

$$R = r_0 + (1 + g'_m r_0) R_S$$



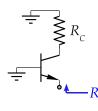

Base Impedances seen through the emitter of a BJT are *decreased* by a factor of  $\beta + 1$ .

$$R \approx \frac{r_{\pi} + R_B}{\beta + 1} = r_e + \frac{R_B}{\beta + 1}$$



Impedances seen through the source of a MOS-FET are *reduced* by the intrinsic gain of the transistor. Use  $g_m' = g_m + g_{mb} = (1 + \chi)g_m$ :

$$\begin{split} R &= \frac{1}{g_m'} \parallel r_0 + \frac{R_D}{1 + g_m' r_0} \\ &\approx \frac{1}{g_m'} + \frac{R_D}{g_m' r_0} \stackrel{r_0 \gg R_D}{\approx} \frac{1}{g_m'} \end{split}$$




Impedances seen through the collector of a BJT are *increased* by the intrinsic gain of the transistor. Loads attached to the emitter are in parallel with  $r_{\pi}$ .

$$R = r_0 + (1 + g_m r_0)(R_E \parallel r_\pi)$$

With a base resistor,  $R_B$  is added to  $r_{\pi}$ , and  $g_m$  is scaled by  $\left(\frac{r_{\pi}}{r_{\pi}+R_B}\right)$ :

$$R = r_0 + \left(1 + \left(\frac{r_{\pi}}{r_{\pi} + R_B}\right) g_m r_0\right) (R_E \parallel (r_{\pi} + R_B))$$



Collector impedances seen through the emitter of a BJT are are *decreased* by the intrinsic gain of the transistor.

$$\begin{split} R &= r_{\pi} \parallel \left(\frac{1}{g_m} \parallel r_0 + \frac{R_C}{1 + g_m r_0}\right) \\ &\approx r_{\pi} \parallel \left(\frac{1}{g_m} + \frac{R_C}{g_m r_0}\right) \\ &\stackrel{r_0 \gg R_C}{\approx} r_{\pi} \parallel \frac{1}{g_m} = r_e \end{split}$$

With a base resistor,  $R_B$  is added to  $r_{\pi}$ , and  $g_m$  is scaled by  $\left(\frac{r_{\pi}}{r_{\pi}+R_B}\right)$ :

$$R = (r_{\pi} + R_B) \parallel \left( \frac{1}{\left(\frac{r_{\pi}}{r_{\pi} + R_B}\right) g_m} \parallel r_0 + \frac{R_C}{1 + \left(\frac{r_{\pi}}{r_{\pi} + R_B}\right) g_m r_0} \right)$$

All expressions assume  $v_B$  is constant.

$$g'_{m} = g_{m} + g_{mb} = g_{m}(1 + \chi)$$
  
If  $v_{BS} = 0$ , set  $\chi = 0$ .