ECE 177 — Programming |I: From C
Foundations to Hardware Interaction
Lecture 1

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

21 January 2026

https://web.eece.maine.edu/~vweaver

Welcome to ECE177!

We're going to learn all about C!

https://web.eece.maine.edu/~vweaver/classes/ecel77_2026s/

https://web.eece.maine.edu/~vweaver/classes/ece177_2026s/

Announcements

e No Labs this week!
e Will start taking attendance next week!

Syllabus — Instructor Info

e I'm Professor Weaver
e First time teaching this class so please bear with me

e Go over syllabus (can find it on website)
e QR-Code: Should you trust it?

Syllabus — Academic Honesty

e This has been a problem in the past!

e Do not copy code from other students, either current or
from previous years.

e Asking help from the professor/TA is fine

e General discussion with classmates is fine

e Even having someone look over your code to help find a
problem is fine

e Do not share your code, even if the person requesting
claims they will just use it as a reference. In

-y 4

my experience it's too tempting and the person will
“accidentally” submit it as their own.

e Do not share code even if it's after the submission
deadline as students will submit late work.

e Just don't copy someone else's code and submit it as
your own
This includes cut-and-paste or retyping

e Also don't copy code off the internet (again, looking for
advice online is fine, but copying code directly is not)

e Don't use Al tools that do the homework for you! (Like
Microsoft /Github Co-pilot/ChatGPT)

-y 5

Why not Al?

e You'll note that I'm not a huge fan of Al

e Makes me unusual as it's the current fad

e You're here to get a solid C background for later
classes/life

e Al can be subtly wrong, and you can only catch it if you
actually know what's going on

e | want to be helping you learn to code, not some Al

e \Who knows what happens once the Al bubble collapses,
or if/when they start charging a lot of money to use Al

-y 6

Programming

e Has anyone programmed before?

e What is programming?

e \We want to tell a computer what to do.

e It shouldn't be an unfathomable magic box, but it's a
tool that we can understand and control

e I'm a computer engineer and like to program, | know it
can be tedious for those who don't

Programming Languages

e \What languages have you used?
e Ones that | know best

o BASIC

o Pascal

o C (I initially hated it)

o FORTRAN

o Assembly Language

Other Programming Languages

e Low-level system languages: C, Rust, Zig, Go

o C related: CH++, C#

e Interpreted languages: Java, Python, Javascript,
Typescript

e Ancient ones: Fortran, Ada, COBOL, APL, Perl, Tcl,
Pascal, BASIC

e And many, many more. . .

Can You Write your own Programming
Language

e Yes!

e It's a bit beyond this class though, but anything a
computer is doing someone had to originally program it
to do so

-y 10

Hello World

/* Hello World Example x*/

#include <stdio.h>

int main(int argc, char x*xargv) {
printf ("Hello World!\n");

return 5;

11

Livecoding Interlude

e It's hard to live-code on screen with people watching
e Some people do it as part of live Demoscene competitions
e Here are two example from demoparties:

o Shader Showdown (in GLSL shader language which is
vaguely C-like)
https://www.youtube.com/watch?v=JEn3kpysimY

o Byte-batte, a size-coding competition with a 256-byte
limit, in Lua
https://www.youtube.com/watch?v=2JkD6JtzTWO

/Y 12

https://www.youtube.com/watch?v=JEn3kpysimY
https://www.youtube.com/watch?v=2JkD6JtzTW0

Hello World

e Typical C example program

e First hello world example saying that by Brian Kernighan
in 1972 (in B language)

e [here's already a lot going on here but you'll learn more
than you ever wanted to as the course progresses

-y 13

Compiling Code

e The computer you have can't run “high level” .c files
like this directly

e The CPU in your computer only understands raw binary
numbers

e You need a series of programs to convert this text file
down to the “machine code” the actual hardware handles

e The actual hardware itself is fascinating, recommend
“Computer Architecture” (ECE473) to learn how to
build it yourself out of transistors

-y 14

Compiler

e The Compiler takes high level text file, converts it to an

executable that your operating system can pass to the
processor to run.

e An executable i1s the raw machine code often with a

header on it that tells the OS how to set it up before
running (ELF on Linux)

-y 15

Compiler Info

e In the example we use “gcc”’, the GNU C compiler which
is a free compiler that is standard on Linux

e There are other C compilers. Another free one is “clang”
that comes with LLVM

e In the old days there were many commercial C compilers
you could buy, though they are less common these days.
One common one was icc which was put out by Intel to
work best on their chips.

® Compiler inner working are fascinating but beyond this class

/Y 16

Compiler to Assembly Language

e Compiler converts text.c file to “assembly language”
which varies by processor type (x86, ARM, etc)

e Assembly Language is one step up from the binary
“Machine Code” the CPU uses. It still looks vaguely
like English text, but each instruction maps directly to a
low-level instruction

e Some people can write machine code directly, but most
would prefer using higher-level assembly language.

-y 17

Assembler to Object Code

e An assembler converts the .s or .asm file to an “object
file" (.o or .obj) which is mostly machine code binary

e Linux by default this is the GNU assembler (gas)

e Assemblers are much easier to write than compilers
(it's mostly string parsing and bit shifting) though some
architectures (looking at you x86) are hard

-y 18

Linker to Executable

e [here's one more step to take the machine code into a

form that the Operating System can properly set it up
and run it

e A linker converts the object file to the final executable
(Id on Linux)

e This supplies a header (ELF on Linux) that tells the OS

how to load the binary code and where to jump into it,
among other things

-y 19

Compiling Hello World

e Can do the steps separately, or gcc can do it in one step
e Often you'll have a build setup that automates this

e On Linux often use the make tool and Makefiles

e To compile manually looks like this:

gcc -02 -Wall -o hello_world hello_world.c

e If you want to generate assembly language to look at,
you can do

gcc —02 -Wall -S -o hello_world.s hello_world.c

/Y 20

Source Code

e High level list of instructions you pass to a computer

e The higher-level you go often the more it looks like
English with some symbols scattered about

e Usually is just a text file

-y 21

Text Files — What is a file?

e On most OSes it is a bunch of bytes grouped together
and assigned a name

e What's a byte? An 8-bit value, 0..255 (0000.00000 to
1111.1111 in binary).

e Something called a filesystem tracks where the bytes are
on disk and metadata (things like name, creation time,
size)

e Generally all computers store chunks of data in files,
though these days it might be hidden in the cloud

/Y 22

ASCII

e How do you get from 0s/1s to text?

e It's completely arbitrary

e Companies could map letters to numbers any way they
want

e US Govt got fed up and in 1966 defined ASCII (American
Standard Code for Information Interchange)

® man ascll

e Actually on 7-bits
e 0=43,1=49,..

-y 23

o A=65,B=0606,..

e a—=97,b=08,..

e Also “control” characters for things like line-feed,
carriage return, new-page, etc

-y 24

Hex Dump

e Can use tools to dump the raw contents of your file

hexdump -C hello_world.txt

00000000 2f 2a 20 48 65 6¢ 6¢c 6f 20 57 6f 72 6¢c 64 20 45 |/* Hello World E|
00000010 78 61 6d 70 6¢c 65 20 2a 2f Oa Oa 23 69 6e 63 6¢c |xample */..#incl|
00000020 75 64 65 20 3c 73 74 64 69 6f 2¢ 68 3e Oa Oa 69 |ude <stdio.h>..il|
00000030 6e 74 20 6d 61 69 6e 28 69 6e 74 20 61 72 67 63 |nt main(int argcl|

00000040 2c 20 63 68 61 72 20 2a 2a 61 72 67 76 29 20 7b |, char **xargv) {|
00000050 Oa Oa 09 70 72 69 6e 74 66 28 22 48 65 6¢ 6¢c 6f |...printf("Hellol
00000060 20 57 6f 72 6¢c 64 21 5¢c 6e 22 29 3b Oa O0a 09 72 | World!\n");...r|
00000070 65 74 75 72 6e 20 35 3b 0Oa 7d Oa |eturn 5;.}. |
0000007b

Control Characters

e Some “whitespace” characters with special ASCII values
o space
o tab (’\t’)— big debate about using these
o carriage return °\r> / "\n’ linefeed - indicate end of line
date back to old typewriter days
annoyingly Windows, Linux, and MacOS all used
different combinations
e Could you make a computer language entirely out of
whitespace?

/Y 26

Text Editor

Lots and lots of these over the years
VI VS emacs

nano/pico

notepad?

Something fancier in your browser?
e Possibly you use VisualStudio, that's fine, deep down it's
just making .txt files too

-y 21

What if you're not American?

e What if you want to type characters not in roman
alphabet?

e on IBM-PC at least since ASCII only bottom 7-bits they
tried to cram as many European chars as possible in top
128

e Not all fit. And what if you speak Russian (Cyrillic) or
Chinese? Or want emojis?

/Y 28

Unicode/UTF8

e Why not use 16-bits? That gives you 65k characters

e Unicode. Windows and Java went with this

e Turns out 16-bits isn't enough, also not backwards
compatible

Plan9 people came up with UTF-8, a compromise

f 0..127 just like ASCI|

f top bit set it means it is multi-byte

| ets you encode arbitrary characters, downside iIs it

makes parsing strings more complicated

/Y 29

