
ECE 177 – Programming I: From C
Foundations to Hardware Interaction

Lecture 1

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

21 January 2026

https://web.eece.maine.edu/~vweaver

Welcome to ECE177!

We’re going to learn all about C!

https://web.eece.maine.edu/~vweaver/classes/ece177_2026s/

1

https://web.eece.maine.edu/~vweaver/classes/ece177_2026s/

Announcements

• No Labs this week!

• Will start taking attendance next week!

2

Syllabus – Instructor Info

• I’m Professor Weaver

• First time teaching this class so please bear with me

• Go over syllabus (can find it on website)

• QR-Code: Should you trust it?

3

Syllabus – Academic Honesty

• This has been a problem in the past!

• Do not copy code from other students, either current or

from previous years.

• Asking help from the professor/TA is fine

• General discussion with classmates is fine

• Even having someone look over your code to help find a

problem is fine

• Do not share your code, even if the person requesting

claims they will just use it as a reference. In

4

my experience it’s too tempting and the person will

“accidentally” submit it as their own.

• Do not share code even if it’s after the submission

deadline as students will submit late work.

• Just don’t copy someone else’s code and submit it as

your own

This includes cut-and-paste or retyping

• Also don’t copy code off the internet (again, looking for

advice online is fine, but copying code directly is not)

• Don’t use AI tools that do the homework for you! (Like

Microsoft/Github Co-pilot/ChatGPT)

5

Why not AI?

• You’ll note that I’m not a huge fan of AI

• Makes me unusual as it’s the current fad

• You’re here to get a solid C background for later

classes/life

• AI can be subtly wrong, and you can only catch it if you

actually know what’s going on

• I want to be helping you learn to code, not some AI

• Who knows what happens once the AI bubble collapses,

or if/when they start charging a lot of money to use AI

6

Programming

• Has anyone programmed before?

• What is programming?

• We want to tell a computer what to do.

• It shouldn’t be an unfathomable magic box, but it’s a

tool that we can understand and control

• I’m a computer engineer and like to program, I know it

can be tedious for those who don’t

7

Programming Languages

• What languages have you used?

• Ones that I know best

◦ BASIC

◦ Pascal

◦ C (I initially hated it)

◦ FORTRAN

◦ Assembly Language

8

Other Programming Languages

• Low-level system languages: C, Rust, Zig, Go

• C related: C++, C#

• Interpreted languages: Java, Python, Javascript,

Typescript

• Ancient ones: Fortran, Ada, COBOL, APL, Perl, Tcl,

Pascal, BASIC

• And many, many more. . .

9

Can You Write your own Programming
Language

• Yes!

• It’s a bit beyond this class though, but anything a

computer is doing someone had to originally program it

to do so

10

Hello World
/* Hello World Example */

#include <stdio.h>

int main(int argc , char **argv) {

printf("Hello World!\n");

return 5;

}

11

Livecoding Interlude

• It’s hard to live-code on screen with people watching

• Some people do it as part of live Demoscene competitions

• Here are two example from demoparties:

◦ Shader Showdown (in GLSL shader language which is

vaguely C-like)

https://www.youtube.com/watch?v=JEn3kpysimY

◦ Byte-batte, a size-coding competition with a 256-byte

limit, in Lua

https://www.youtube.com/watch?v=2JkD6JtzTW0

12

https://www.youtube.com/watch?v=JEn3kpysimY
https://www.youtube.com/watch?v=2JkD6JtzTW0

Hello World

• Typical C example program

• First hello world example saying that by Brian Kernighan

in 1972 (in B language)

• There’s already a lot going on here but you’ll learn more

than you ever wanted to as the course progresses

13

Compiling Code

• The computer you have can’t run “high level” .c files

like this directly

• The CPU in your computer only understands raw binary

numbers

• You need a series of programs to convert this text file

down to the “machine code” the actual hardware handles

• The actual hardware itself is fascinating, recommend

“Computer Architecture” (ECE473) to learn how to

build it yourself out of transistors

14

Compiler

• The Compiler takes high level text file, converts it to an

executable that your operating system can pass to the

processor to run.

• An executable is the raw machine code often with a

header on it that tells the OS how to set it up before

running (ELF on Linux)

15

Compiler Info

• In the example we use “gcc”, the GNU C compiler which

is a free compiler that is standard on Linux

• There are other C compilers. Another free one is “clang”

that comes with LLVM

• In the old days there were many commercial C compilers

you could buy, though they are less common these days.

One common one was icc which was put out by Intel to

work best on their chips.

• Compiler inner working are fascinating but beyond this class

16

Compiler to Assembly Language

• Compiler converts text.c file to “assembly language”

which varies by processor type (x86, ARM, etc)

• Assembly Language is one step up from the binary

“Machine Code” the CPU uses. It still looks vaguely

like English text, but each instruction maps directly to a

low-level instruction

• Some people can write machine code directly, but most

would prefer using higher-level assembly language.

17

Assembler to Object Code

• An assembler converts the .s or .asm file to an “object

file” (.o or .obj) which is mostly machine code binary

• Linux by default this is the GNU assembler (gas)

• Assemblers are much easier to write than compilers

(it’s mostly string parsing and bit shifting) though some

architectures (looking at you x86) are hard

18

Linker to Executable

• There’s one more step to take the machine code into a

form that the Operating System can properly set it up

and run it

• A linker converts the object file to the final executable

(ld on Linux)

• This supplies a header (ELF on Linux) that tells the OS

how to load the binary code and where to jump into it,

among other things

19

Compiling Hello World

• Can do the steps separately, or gcc can do it in one step

• Often you’ll have a build setup that automates this

• On Linux often use the make tool and Makefiles

• To compile manually looks like this:

gcc -O2 -Wall -o hello_world hello_world.c

• If you want to generate assembly language to look at,

you can do

gcc -O2 -Wall -S -o hello_world.s hello_world.c

20

Source Code

• High level list of instructions you pass to a computer

• The higher-level you go often the more it looks like

English with some symbols scattered about

• Usually is just a text file

21

Text Files – What is a file?

• On most OSes it is a bunch of bytes grouped together

and assigned a name

• What’s a byte? An 8-bit value, 0..255 (0000.00000 to

1111.1111 in binary).

• Something called a filesystem tracks where the bytes are

on disk and metadata (things like name, creation time,

size)

• Generally all computers store chunks of data in files,

though these days it might be hidden in the cloud

22

ASCII

• How do you get from 0s/1s to text?

• It’s completely arbitrary

• Companies could map letters to numbers any way they

want

• US Govt got fed up and in 1966 defined ASCII (American

Standard Code for Information Interchange)

• man ascii

• Actually on 7-bits

• 0=48,1=49,..

23

• A=65,B=66,..

• a=97,b=98,..

• Also “control” characters for things like line-feed,

carriage return, new-page, etc

24

Hex Dump

• Can use tools to dump the raw contents of your file

hexdump -C hello_world.txt

00000000 2f 2a 20 48 65 6c 6c 6f 20 57 6f 72 6c 64 20 45 |/* Hello World E|

00000010 78 61 6d 70 6c 65 20 2a 2f 0a 0a 23 69 6e 63 6c |xample */..#incl|

00000020 75 64 65 20 3c 73 74 64 69 6f 2e 68 3e 0a 0a 69 |ude <stdio.h>..i|

00000030 6e 74 20 6d 61 69 6e 28 69 6e 74 20 61 72 67 63 |nt main(int argc|

00000040 2c 20 63 68 61 72 20 2a 2a 61 72 67 76 29 20 7b |, char **argv) {|

00000050 0a 0a 09 70 72 69 6e 74 66 28 22 48 65 6c 6c 6f |...printf("Hello|

00000060 20 57 6f 72 6c 64 21 5c 6e 22 29 3b 0a 0a 09 72 | World!\n");...r|

00000070 65 74 75 72 6e 20 35 3b 0a 7d 0a |eturn 5;.}.|

0000007b

25

Control Characters

• Some “whitespace” characters with special ASCII values

◦ space

◦ tab (’\t’)– big debate about using these

◦ carriage return ’\r’ / ’\n’ linefeed - indicate end of line

date back to old typewriter days

annoyingly Windows, Linux, and MacOS all used

different combinations

• Could you make a computer language entirely out of

whitespace?

26

Text Editor

• Lots and lots of these over the years

• vi vs emacs

• nano/pico

• notepad?

• Something fancier in your browser?

• Possibly you use VisualStudio, that’s fine, deep down it’s

just making .txt files too

27

What if you’re not American?

• What if you want to type characters not in roman

alphabet?

• on IBM-PC at least since ASCII only bottom 7-bits they

tried to cram as many European chars as possible in top

128

• Not all fit. And what if you speak Russian (Cyrillic) or

Chinese? Or want emojis?

28

Unicode/UTF8

• Why not use 16-bits? That gives you 65k characters

• Unicode. Windows and Java went with this

• Turns out 16-bits isn’t enough, also not backwards

compatible

• Plan9 people came up with UTF-8, a compromise

• If 0..127 just like ASCII

• If top bit set it means it is multi-byte

• Lets you encode arbitrary characters, downside is it

makes parsing strings more complicated

29

