ECE 177 — Programming |I: From C
Foundations to Hardware Interaction
Lecture 3

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

28 January 2026

https://web.eece.maine.edu/~vweaver

Announcements

e Labs happening this week!

e Meant to start taking attendance this week but they
keep adding more students. Maybe Friday.

e Homeworks, working on getting that set up

Brief Aside: Why C and not C++

e | hear C++ contains all of C plus all kinds of powerful
extra stuff

e C is procedural, verbs, like printf(string)
C++ is object-oriented, string.print()

e With C it's more obvious when you write code what the
corresponding assembly will look like (c++ hides things)

e C-++4 adds lots of features to C that make things complex
o Operator Overloading
o Exceptions

-y 2

o STL
e For our purposes in ECE to have you experience a system
anguage C is a much more straightfoward choice
e | also personally don't like C++4 for various reasons but
that's sort of tangential

e If you're a computer engineer you will encounter object-
oriented in ECE277 (though in Python)

Labl Info

e | apologize this info is a bit late, was planning on giving
it Monday but was thwarted by the snow

e Monday lab we are just going to delay to next Monday
assuming it doesn’'t snow again

e Thanks to Tuesday lab for being the test-run

o If | duck out of lab it means | probably have a meeting,
not that | am abandoning you

Labl What you Need

e Bring your laptop!

e If your laptop does not have a USB-A connector ideally
you'd have some sort of adapter

e Currently there's no pre-lab

e The lab materials are posted off of the 177 website

e Lab submission is via Brightspace. The current 177
Brightspace page 1s not well populated because | don't
have much experience with it

Labl Parts

e We're going to start handing out parts to you

e Don't lose them! You can keep them in the end. We
don't really have any extra

e This week you get a breadboard/wires, Pi-pico, and USB
cable

e You'll upload 6 screenshots to Brightspace

Labl Goal

e Install the tools on your laptop that you need for later
labs
o This includes a C compiler, and VS Code
o Also PuTTY or screen to access serial port
e You will compile and upload sample Pi Pico code that
blinks an LED and prints a value to seria
e You will also write a simple hello world program and run
it locally on your laptop

Software Installation

e [he assumption is you have a Windows Laptop and in
theory those directions are the most tested

e We provide Mac and Linux directions too though it
might be harder to get those going

e | personally am not a Microsoft fan so while I've tested
the Mac and Linux | haven't tested Windows and am
leaning on TAs for help with that

Why VS Code?

e Why are we using VS Code?

e Some people do like it. It's a “modern” IDE and widely
used

e It's also the official supported way of doing things in the
official Pi Pico documentation

e Previous years they've used it and | foolishly assumed
that meant the directions were well-tested

Can | do things w/o VS Code?

e Maybe...

e | personally like doing everything at the text prompt and
in fact have previously done some Pico programming
that way

e The pi-pico SDK assumes you are using the “CMake”
build system which is super-complex (alternatives aren't
necessarily better)

e If | have time I'll see if | can come up with some VS-code
less directions

-y 10

Writing Hello World

/* Hello World Example x*/

#include <stdio.h>

int main(int argc, char *xargv) {
printf ("Hello World!\n");

return 5;

// comment

11

C code — Comments

e It is *always* important to comment your code
e In C there are two ways to do this
o Multi-line comments /+ ... x/
anything in between ignored by compiler
o End-of-line comments // ...
anything after to end of line ignored
e Can also be useful to temporarily disable parts of your
code when testing

/Y 12

Comments — What should they be like?

e Describe what the code is doing

e Say who wrote it, copyright, license

e Think, if | come back to this code in 6 months, will |
still understand what it does

e If you share code with someone else, can they understand
what it does?

e |t is hard to over-comment code
However don't just restate things

/Y 13

Comments Example

e Comments that just literally restate the code aren't
always that useful

int i=1; /* set integer i equal to 1 x*/
\begin{lstlisting}

\item Better is if they explain the things that would be
\begin{lstlisting}

int j=2; /* set the vertical index register equal to th
/* value described in Section 4.2 of the manua

-y 14

C coding style

e Are there any rules on how to write code? (not really)
e Does the compiler enforce things like Python does? (No)
e Most projects have a preferred style
o New data blocks should be indented, either with tabs
or spaces

oS
oS
oS

o Peop

nou
Nou

nou

d the { be on a new line?

d there be spaces after keywords?

d you wrap text at 80 lines?

e will argue forever about these things

15

o VariablesCamelCase or lots_of_underscores or
Hungarian notation (with type info)

/Y 16

International Obfuscated C Code
Competition

e https://www.ioccc.org/

e In 80s people thought some C code was awful

e As a joke had a competition to see who could write the
most confusing code

e Has been running off and on since

e A competition is currently open now (deadline in March)

e | have won twice (once in 2005, once in 2025)

e Please do not write your ECE177 code this way

-y 17

https://www.ioccc.org/

Show Some Example Winners

e Showed 2012/endohl (“self documenting” fluid
dynamics simulator)

e Showed 2005 “Most Beauteous Visuals” winner (3d-
cube)

e Showed 2024 “Sur-Prize” winner (you'll have to go view
it yourself)

/Y 18

C Variable Declarations

e Variables are values in memory used by your program.

e In C you need to declare them before you use them

e In old days had to initialize at the top of a block, these
days not anymore

e You can specify a starting value, but you don't have to
What value does it get if you don't?

e You can specify more than one on a line char a=0,b,c=2;

/Y 19

C Variables — Behind the Scene

e You can give names to your variables

e The hardware doesn't know about this, as far as it knows
It just has addresses in memory storing bits

e [he compiler is responsible for helping your code allocate
memory for these, and mapping the name to the address
In memory

-y 20

C has various built-in data types made of
one or more bytes

e [o confuse things, these aren't necessarily the same size
on different machines

e [hey also may come in signed and unsigned variants

e o the processor though it's just bytes moving around,
it's up to you the programmer and the programming
language to build up higher-order things

/Y 21

char

® char a;
e Often the size to hold a character for printing
No longer true with unicode (windows has special wchar)
e Usually 8-bits
e Can be signed or unsigned.
Annoyingly the default can vary based on what platform
you are on.

/Y 22

short int

® short s; OF short int s;
e signed / unsigned
e At least 16-bits. Usually 16-bits

23

int

® int i;
e signed / unsigned
e At least 16-bits. Usually 32-bits on modern machines.

24

long int

® long 1; OF long int 1;
e signed / unsigned
e At least 32-bits. Usually big enough to hold a pointer?

-y 25

long long int

® long long 1; OrF long long int 1;
e signed / unsigned
e At least 64-bits. Usually big enough to hold a pointer?

-y 26

Rules of relative sizes

e sizeof(char) < sizeof(short) < sizeof(int) < sizeof(long)
< sizeof(long long)

-y 21

System Differences

e ILP32 (int, long, and pointers all 32-bits): 32-bit Linux,
32-bit macQOS, 32-bit Windows

e LP64 (long, pointer 64-bits): 64-bit macOS, 64-bit Linux

e LLP64 (long is 32-bits, pointers 64-bit): 64-bit Windows

/Y 28

What if you want exact sizes?

® You can #include <stdint.h>

e [hen you can use exact types:
O uint32_t x; IS @ 32-bit unsigned int
o int8_t q; IS an 8-bit signed int

29

Floating Point

e By default a 32-bit int can be from 0...4GB or so, or
-2GB to 2GB

e What if you want bigger or smaller? Fractional values?

e Floating point allows these, has a mantissa and
exponent. How it's encoded is a bit beyond this class

e Can also encode special values like NaN (not a number)
and + /- infinity

/Y 30

® float f;

e Generally 32-bit

float

31

® double d;

e Generally 64-bit

double

32

Aside

e x86 has long double? 80 bits?

e Modern day systems can have 16-bit, 8-bit, 4-bit, etc,
for speed. Mostly find these on GPUs

e Supercomputers measure performance in FLOPS
(floating-point operations per second)
GPUs will report really high FLOP count by using the
smaller sized floats

-y 33

There can be a lot of complications to
Using Floats

e In binary most fractional values end up not being exact
but repeating decimals and so math tends to be a bit
Inexact

e Comparing with = is dangerous, really need to compare
within a range

e Rounding can cause problems, and some algorithms
might not converge

e This is all a bit beyond this class

-y 34

Sample Code

/* test sizes of data types */
#include <stdio.h>

int main(int argc, char *xargv) {

printf ("Size of char is: %d bytes\n",sizeof (char));
printf ("Size of short is: %d bytes\n",sizeof (short));
printf ("Size of int is: %d bytes\n",sizeof (int));
printf ("Size of long is: %d bytes\n",sizeof (long));
printf ("Size of long long is: %d bytes\n",

sizeof (long long));

return O0;

-y 35

More Advanced Data Types

e We'll see later we can build more advanced data types
based on the built-in ones described here
e \We'll revisit this in the future

/Y 36

