
ECE 177 – Programming I: From C
Foundations to Hardware Interaction

Lecture 3

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

28 January 2026

https://web.eece.maine.edu/~vweaver

Announcements

• Labs happening this week!

• Meant to start taking attendance this week but they

keep adding more students. Maybe Friday.

• Homeworks, working on getting that set up

1

Brief Aside: Why C and not C++

• I hear C++ contains all of C plus all kinds of powerful

extra stuff

• C is procedural, verbs, like printf(string)

C++ is object-oriented, string.print()

• With C it’s more obvious when you write code what the

corresponding assembly will look like (c++ hides things)

• C++ adds lots of features to C that make things complex

◦ Operator Overloading

◦ Exceptions

2

◦ STL

• For our purposes in ECE to have you experience a system

language C is a much more straightfoward choice

• I also personally don’t like C++ for various reasons but

that’s sort of tangential

• If you’re a computer engineer you will encounter object-

oriented in ECE277 (though in Python)

3

Lab1 Info

• I apologize this info is a bit late, was planning on giving

it Monday but was thwarted by the snow

• Monday lab we are just going to delay to next Monday

assuming it doesn’t snow again

• Thanks to Tuesday lab for being the test-run

• If I duck out of lab it means I probably have a meeting,

not that I am abandoning you

4

Lab1 What you Need

• Bring your laptop!

• If your laptop does not have a USB-A connector ideally

you’d have some sort of adapter

• Currently there’s no pre-lab

• The lab materials are posted off of the 177 website

• Lab submission is via Brightspace. The current 177

Brightspace page is not well populated because I don’t

have much experience with it

5

Lab1 Parts

• We’re going to start handing out parts to you

• Don’t lose them! You can keep them in the end. We

don’t really have any extra

• This week you get a breadboard/wires, Pi-pico, and USB

cable

• You’ll upload 6 screenshots to Brightspace

6

Lab1 Goal

• Install the tools on your laptop that you need for later

labs

◦ This includes a C compiler, and VS Code

◦ Also PuTTY or screen to access serial port

• You will compile and upload sample Pi Pico code that

blinks an LED and prints a value to serial

• You will also write a simple hello world program and run

it locally on your laptop

7

Software Installation

• The assumption is you have a Windows Laptop and in

theory those directions are the most tested

• We provide Mac and Linux directions too though it

might be harder to get those going

• I personally am not a Microsoft fan so while I’ve tested

the Mac and Linux I haven’t tested Windows and am

leaning on TAs for help with that

8

Why VS Code?

• Why are we using VS Code?

• Some people do like it. It’s a “modern” IDE and widely

used

• It’s also the official supported way of doing things in the

official Pi Pico documentation

• Previous years they’ve used it and I foolishly assumed

that meant the directions were well-tested

9

Can I do things w/o VS Code?

• Maybe...

• I personally like doing everything at the text prompt and

in fact have previously done some Pico programming

that way

• The pi-pico SDK assumes you are using the “CMake”

build system which is super-complex (alternatives aren’t

necessarily better)

• If I have time I’ll see if I can come up with some VS-code

less directions

10

Writing Hello World
/* Hello World Example */

#include <stdio.h>

int main(int argc , char **argv) {

printf("Hello World!\n"); // comment

return 5;

}

11

C code – Comments

• It is *always* important to comment your code

• In C there are two ways to do this

◦ Multi-line comments /* ... */

anything in between ignored by compiler

◦ End-of-line comments // ...

anything after to end of line ignored

• Can also be useful to temporarily disable parts of your

code when testing

12

Comments – What should they be like?

• Describe what the code is doing

• Say who wrote it, copyright, license

• Think, if I come back to this code in 6 months, will I

still understand what it does

• If you share code with someone else, can they understand

what it does?

• It is hard to over-comment code

However don’t just restate things

13

Comments Example

• Comments that just literally restate the code aren’t

always that useful
int i=1; /* set integer i equal to 1 */

\begin{lstlisting}

\item Better is if they explain the things that would be nonobvious

\begin{lstlisting}

int j=2; /* set the vertical index register equal to the */

/* value described in Section 4.2 of the manual */

14

C coding style

• Are there any rules on how to write code? (not really)

• Does the compiler enforce things like Python does? (No)

• Most projects have a preferred style

◦ New data blocks should be indented, either with tabs

or spaces

◦ Should the { be on a new line?

◦ Should there be spaces after keywords?

◦ Should you wrap text at 80 lines?

◦ People will argue forever about these things

15

◦ VariablesCamelCase or lots of underscores or

Hungarian notation (with type info)

16

International Obfuscated C Code
Competition

• https://www.ioccc.org/

• In 80s people thought some C code was awful

• As a joke had a competition to see who could write the

most confusing code

• Has been running off and on since

• A competition is currently open now (deadline in March)

• I have won twice (once in 2005, once in 2025)

• Please do not write your ECE177 code this way

17

https://www.ioccc.org/

Show Some Example Winners

• Showed 2012/endoh1 (“self documenting” fluid

dynamics simulator)

• Showed 2005 “Most Beauteous Visuals” winner (3d-

cube)

• Showed 2024 “Sur-Prize” winner (you’ll have to go view

it yourself)

18

C Variable Declarations

• Variables are values in memory used by your program.

• In C you need to declare them before you use them

• In old days had to initialize at the top of a block, these

days not anymore

• You can specify a starting value, but you don’t have to

What value does it get if you don’t?

• You can specify more than one on a line char a=0,b,c=2;

19

C Variables – Behind the Scene

• You can give names to your variables

• The hardware doesn’t know about this, as far as it knows

it just has addresses in memory storing bits

• The compiler is responsible for helping your code allocate

memory for these, and mapping the name to the address

in memory

20

C has various built-in data types made of
one or more bytes

• To confuse things, these aren’t necessarily the same size

on different machines

• They also may come in signed and unsigned variants

• To the processor though it’s just bytes moving around,

it’s up to you the programmer and the programming

language to build up higher-order things

21

char

• char a;

• Often the size to hold a character for printing

No longer true with unicode (windows has special wchar)

• Usually 8-bits

• Can be signed or unsigned.

Annoyingly the default can vary based on what platform

you are on.

22

short int

• short s; or short int s;

• signed / unsigned

• At least 16-bits. Usually 16-bits

23

int

• int i;

• signed / unsigned

• At least 16-bits. Usually 32-bits on modern machines.

24

long int

• long l; or long int l;

• signed / unsigned

• At least 32-bits. Usually big enough to hold a pointer?

25

long long int

• long long l; or long long int l;

• signed / unsigned

• At least 64-bits. Usually big enough to hold a pointer?

26

Rules of relative sizes

• sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long)

≤ sizeof(long long)

27

System Differences

• ILP32 (int, long, and pointers all 32-bits): 32-bit Linux,

32-bit macOS, 32-bit Windows

• LP64 (long, pointer 64-bits): 64-bit macOS, 64-bit Linux

• LLP64 (long is 32-bits, pointers 64-bit): 64-bit Windows

28

What if you want exact sizes?

• You can #include <stdint.h>

• Then you can use exact types:

◦ uint32_t x; is a 32-bit unsigned int

◦ int8_t q; is an 8-bit signed int

29

Floating Point

• By default a 32-bit int can be from 0...4GB or so, or

-2GB to 2GB

• What if you want bigger or smaller? Fractional values?

• Floating point allows these, has a mantissa and

exponent. How it’s encoded is a bit beyond this class

• Can also encode special values like NaN (not a number)

and +/- infinity

30

float

• float f;

• Generally 32-bit

31

double

• double d;

• Generally 64-bit

32

Aside

• x86 has long double? 80 bits?

• Modern day systems can have 16-bit, 8-bit, 4-bit, etc,

for speed. Mostly find these on GPUs

• Supercomputers measure performance in FLOPS

(floating-point operations per second)

GPUs will report really high FLOP count by using the

smaller sized floats

33

There can be a lot of complications to
Using Floats

• In binary most fractional values end up not being exact

but repeating decimals and so math tends to be a bit

inexact

• Comparing with = is dangerous, really need to compare

within a range

• Rounding can cause problems, and some algorithms

might not converge

• This is all a bit beyond this class

34

Sample Code

/* test sizes of data types */

#include <stdio.h>

int main(int argc , char **argv) {

printf("Size of char is: %d bytes\n",sizeof(char));

printf("Size of short is: %d bytes\n",sizeof(short));

printf("Size of int is: %d bytes\n",sizeof(int));

printf("Size of long is: %d bytes\n",sizeof(long));

printf("Size of long long is: %d bytes\n",

sizeof(long long));

return 0;

}

35

More Advanced Data Types

• We’ll see later we can build more advanced data types

based on the built-in ones described here

• We’ll revisit this in the future

36

