
ECE 177 – Programming I: From C
Foundations to Hardware Interaction

Lecture 4

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

30 January 2026

https://web.eece.maine.edu/~vweaver

Announcements

• Will take Attendance

• Homeworks, still working on getting that set up

• If you are mailing me about missing class, please mention

it’s ECE177 you are missing and ideally the exact dates.

1

Lab Update

• Sorry going a bit poorly. As a computer engineer I always

feel responsible when a computer is not working

• Getting things going from directions and having them

work out is sadly not uncommon as a computer engineer.

Please don’t let it scare you away!

• Possibly some of the troubles on Windows are if OneDrive

enabled, are working on updated documentation

2

Numbering Systems – Base 10

• Most people use base 10: digits 0..9

• Place Value, 31, 415.92 :

3 1 4 1 5 . 9 2

104 103 102 101 100 . 10−1 10−2

• This is arbirary, can do with any base

3

Binary Numbers – Base 2

• Computers inside use base 2: digits 0,1

• 1010 1100
1 0 1 0 1 1 0 0 . 0

27 26 25 24 23 22 21 20 . 2−1

128 64 32 16 8 4 2 1 .
• Powers of two (do you have them memorized)

• In C int i=0b10101100; nonstandard until C23

gcc supported earlier?

• The numbers get a bit long for 32-bit and 64-bit

4

Octal Numbers – Base 8

• Base 8: digits 0..7

• C supports this because early UNIX systems used it, still

see in things like permissions chmod 0777

• If you group binary bits by 3 then easily convert to octal

001.010.100 = 0124

• In C indicate with leading zero

• NOTE! This can cause bugs! People think 0123 is

decimal and you can ignore leading 0, but no, it’s

actually octal 1*64+2*8+3=83

5

Hexadecimal Numbers – Base 16

• Base 16, digits 0..9,A..F

• Very common way to write large binary numbers

• If you group by 4 then easy to convert binary to hex

1010.1000.0001.1111 = 0xA81F

• Can spell things, 0xdeadbeef, 0xcafebabe, etc

• In C use leading 0x, int i=0xfeb13;

(Aside, old 8-bit systems use $ or h, ie. $1234 or 1234h)

6

Converting Binary to Decimal

• Things like printf() might do this

• Take number, divide by 10

Remainder is digit, quotient divide again

123 / 10 = 10R3, 10/10=1R2 1/10 = 0R1

Get results right to left

7

Converting Decimal to Binary

• Just eyeball it and grab the values

• Method: Divide by 2, Remainder. 10 /2 = 5R0,

5/2=2R1 2/2=1R0 1/2=0R1 = 1010

8

Hex to Binary and Binary to Hex

• Much easier, which is why we use Hex

• Just convert 4 bits at a time

• When you learn more digital logic, divide by

16/remainder (mod by 16) are just shifts and ands

9

Signed Numbers

• We talked about “signed” integers. How does that

actually work? And why is there a distinction?

• On modern computers, when you have a binary number

in memory your CPU has no idea if a number is signed.

It just sees an 8-bit integer or whatever

• It’s a software convention to treat this pattern as signed

or unsigned

10

One’s Complement

• This is the most straightforward way to do things, but

essentially no modern computers use it

• To treat a number as negative just set the high bit to 1.

• 0000.0001 (0x01) is positive 1

1000.0001 (0x81) is negative 1

• For 8-bit number, 0..127 same as normal, but you can’t

have values higher than that. unsigned 128..255 become

-0,-1,..-127

• Hardware has to special case adds/subtracts

11

• Weird corner case: there are two zeros (one positive,

one negative)

• The C spec in theory allows machines using one’s

complement for historical reasons

12

Two’s Complement

• To convert a number to be negative, flip each bit (0 to

1, 1 to 0) and add 1

• The top bit will be 1 if negative

• What is -1 in two’s complement? Take 1 and negate it

0 0 0 0 0 0 0 1 (0x01)

flip

1 1 1 1 1 1 1 0 (0xfe)

now add 1

1 1 1 1 1 1 1 1 (0xff)

13

(ignore carry out of top bit if happens)

• So -1 is 0xff in two’s complement

• Addition/subtraction work same for signed and unsigned

numbers

• signed: 1 + -1 = 0 (0x01+0xff = 0x00, overflow ignored)

• unsigned: 1 + 255 = 0 (unsigned wrap around to 0

when overflow)

• Corner case: you can represent -128 (0x80) but the

highest number is 127 (0x7f)

14

Types – Reminder

• char, short, long, long long, float, double

• What can you assign to these?

15

Separating Statements

• We showed last class you can run together your code all

on one line, C has no rules about it

• How does the compiler keep the separate statements

apart?

• You have to have a semicolon separating one from the

next

• int i=5; char j=3;

16

Assigning Values to Variables

• After declaring a variable we can assign a value to it

(that’s the name, its value can vary)

• Sort of showed this earlier

• Use equals sign to assign a value

• int i=5;

• Be careful, if you come from a language where = means

check if equal and has something else that means assign

(:= pascal) this can trip you up and even lead to serious

bugs. C compiler better about warning you

17

Assigning Values from other Variables

• int x=5; int y; y=x; After this what value does y have? (5,

same as X)

18

Assigning Values from other Types

• int i=5; char c;

• Can you do c=i;?

• In a strongly typed language this would give you an error

• C will happily do this for you

• What happens if the value you are trying to assign won’t

fit?

19

Converting between Types / Promotion

• If types are the same, no problem

• When they are different, lower type converted to higher

type

• C always promotes lower value up

• Nothing is demoted until end when the value is stored

• If doesn’t fit, truncates (it doesn’t round)

• This is often what you want, but not always.

20

Implicit Promotion Example

• int a=5;

char c,b=3;

c=a+b;

• When adding a+b, the char b is converted up to an

integer size to do the math

• When done and assigning back to c, the result is

truncated to fit into a char

21

Implicit Promotion Floating Point

• A similar thing happens when converting from int to

float types

• Note again: no rounding happens. So if
float f=2.8;

int i;

i=f;

• i wil get the value 2, not 3

22

Constants or Literals

• Besides variables you’ll notice we have been using

constants

• 1 is an integer

• 1.0 is a floating point value

• What if you want/need to enforce a size?

• 1.0f or 1.0F float

• 1.0l or 1.0L doule

• 1u or 1U = unsigned int

• 1ul or 1UL

23

Character Constants

• Use single quotes

• char c=’A’;

• Sets to ASCII equivalent

• Special characters can be escaped

◦ ’\t’ is tab

◦ ’\n’ is linefeed

◦ ’\r’ is carriage return

◦ ’\b’ is bell/beep

24

