ECE 177 — Programming |I: From C
Foundations to Hardware Interaction
Lecture 4

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

30 January 2026

https://web.eece.maine.edu/~vweaver

Announcements

o Will take Attendance

e Homeworks, still working on getting that set up

e If you are mailing me about missing class, please mention
it's ECE177 you are missing and ideally the exact dates.

Lab Update

e Sorry going a bit poorly. As a computer engineer | always
feel responsible when a computer is not working

e Getting things going from directions and having them
work out is sadly not uncommon as a computer engineetr.
Please don't let it scare you away!

e Possibly some of the troubles on Windows are if OneDrive
enabled, are working on updated documentation

Numbering Systems — Base 10

e Most people use base 10: digits 0..9
e Place Value, 31,415.92 :

3 1 4 1 5 . 9 2
104 10% 10% 10 10° . 107! 1072
e This is arbirary, can do with any base

Binary Numbers — Base 2

e Computers inside use base 2: digits 0,1

e 1010 1100
1 0 1 0 1 1 0 0 . O

27 20 925 24 23 22 20 20 971
128 64 32 16 8 4 2 1
e Powers of two (do you have them memorized)

e In C int i=ob10101100; nonstandard until C23
gcc supported earlier?
e The numbers get a bit long for 32-bit and 64-bit

Octal Numbers — Base 8

e Base 8: digits 0..7

e C supports this because early UNIX systems used it, still
see In things like permissions chmod 0777

e If you group binary bits by 3 then easily convert to octal
001.010.100 = 0124

e In C indicate with leading zero

e NOTE! This can cause bugs! People think 0123 is
decimal and you can ignore leading 0, but no, iIt's
actually octal 1*64+2*8+3—=83

-y 5

Hexadecimal Numbers — Base 16

e Base 16, digits 0..9,A..F

e VVery common way to write large binary numbers

e If you group by 4 then easy to convert binary to hex
1010.1000.0001.1111 = O0xA81F

e Can spell things, Oxdeadbeef, Oxcafebabe, etc

e In C use leading Ox, int i=0xfebl3;
(Aside, old 8-bit systems use $ or h, ie. $1234 or 1234h)

Converting Binary to Decimal

e Things like printf() might do this

e Take number, divide by 10
Remainder is digit, quotient divide again
123 / 10 = 10R3, 10/10=1R2 1/10 = OR1
Get results right to left

Converting Decimal to Binary

e Just eyeball it and grab the values
e Method: Divide by 2, Remainder. 10 /2 = 5RO,
5/2=2R1 2/2=1R0 1/2=0R1 = 1010

Hex to Binary and Binary to Hex

e Much easier, which is why we use Hex

e Just convert 4 bits at a time

e When vyou learn more digital logic, divide by
16 /remainder (mod by 16) are just shifts and ands

Signed Numbers

e We talked about “signed” integers. How does that
actually work? And why is there a distinction?

e On modern computers, when you have a binary number
in memory your CPU has no idea if a number is signed.
It just sees an 8-bit integer or whatever

e It's a software convention to treat this pattern as signed
or unsigned

/Y 10

One’s Complement

e This is the most straightforward way to do things, but
essentially no modern computers use it

e [o treat a number as negative just set the high bit to 1.

e 0000.0001 (0x01) is positive 1
1000.0001 (0x81) is negative 1

e For 8-bit number, 0..127 same as normal, but you can't
have values higher than that. unsigned 128..255 become
-0,-1,..-127

e Hardware has to special case adds/subtracts

-y 1

e Weird corner case: there are two zeros (one positive,
one negative)

e The C spec in theory allows machines using one's
complement for historical reasons

-y 12

Two’'s Complement

e To convert a number to be negative, flip each bit (0 to
1,1to0) and add 1

e [he top bit will be 1 if negative

e What is -1 in two's complement? Take 1 and negate it

0000 0001 (0x01)
flip
1111 1110 (0xfe)

now add 1
o N [-) Al (Oxff)

(ignore carry out of top bit if happens)

e So -1 is Oxff in two's complement

e Addition/subtraction work same for signed and unsigned
numbers

e signed: 1+ -1 =0 (0x01+4-0xff = 0x00, overflow ignored)

e unsigned: 1 + 255 = 0 (unsigned wrap around to 0
when overflow)

e Corner case: you can represent -128 (0x80) but the
highest number is 127 (0x7f)

-y 14

Types — Reminder

e char, short, long, long long, float, double
e What can you assign to these?

15

Separating Statements

e \We showed last class you can run together your code all
on one line, C has no rules about it

e How does the compiler keep the separate statements
apart?

e You have to have a semicolon separating one from the
next

® int i=5; char j=3;

/Y 16

Assigning Values to Variables

e After declaring a variable we can assign a value to it
(that's the name, its value can vary)

e Sort of showed this earlier

e Use equals sign to assign a value

® int i=5;

e Be careful, if you come from a language where = means
check if equal and has something else that means assign
(:= pascal) this can trip you up and even lead to serious
bugs. C compiler better about warning you

-y 17

Assigning Values from other Variables

® int x=5; int y; y=x; After this what value does Yy have? (5,
same as X)

-y 18

Assigning Values from other Types

® int i=b; char c;

e Can you do c=i;?

e In a strongly typed language this would give you an error
e C will happily do this for you

e \What happens if the value you are trying to assign won't
fit?

-y 19

Converting between Types / Promotion

o If types are the same, no problem

e When they are different, lower type converted to higher
type

e C always promotes lower value up

e Nothing i1s demoted until end when the value is stored

e If doesn't fit, truncates (it doesn't round)

e This is often what you want, but not always.

/Y 20

Implicit Promotion Example

® int a=5;
char c,b=3;
c=a+b;

e When adding a+b, the char b is converted up to an
Integer size to do the math

e When done and assigning back to c, the result is
truncated to fit into a char

-y 21

Implicit Promotion Floating Point

e A similar thing happens when converting from int to
float types

e Note again: no rounding happens. So if

float £=2.8;
int 1;
1=1;

e | wil get the value 2, not 3

-y 22

Constants or Literals

e Besides variables you'll notice we have been using
constants

e 1 Is an integer

e 1.0 is a floating point value

e What if you want/need to enforce a size?

e 1.0f or 1.0F float

e 1.0l or 1.0L doule

e lu or 1U = unsigned int

e lul or 1UL

-y 23

Character Constants

e Use single quotes

® char c=’A";
e Sets to ASCII equivalent
e Special characters can be escaped

O

®)
O
®)

'\t IS tab

\n’ IS linefeed

'\r’> IS carriage return
\b> is bell /beep

24

