ECE 214 – Electrical Circuits Lab Lecture 1

Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu

20 January 2015

Announcements

- Class notes will be posted on the website: http://web.eece.maine.edu/~vweaver/classes/ece214_2015s/
- Won't be printing out lab, it will be available on website.

Lab #1

- Getting used to the equipment
- Finding out if your measurement equipment alters the results you get during lab.
- You will need: Breadboard, DVM, probe, lab notebook
- No prelab this week; optionally watch the Oscilloscope video found on the references page of the website.

Test Equipment Overview

- How much overhead is there in the test equipment?
- We will measure a simple voltage divider and see how it behaves with different values, and compare against the ideal.
- Manuals will be linked on webpage

Breadboard

+		2 2 2 2			1 1 1			2 2 2		3 5 X 5 2 3	+ + 1	
а. Ф.		25	21 • • • 22 • • • • 23 • • •	19	16 * * * 17 * * * 18 * * *	13 × × × 14 × × × 15 × × ×	11 = = =		5 x x x x x	2 G N F F I F F I	1 2 5 0	
				:):		:::	* *	* * *	* * *		* * 0	
r g h		* * *	* * * *		* * *	* * *	* *	* * * * * * * * *	е е е е е е			
	* 27 * 28	* 24 * 26 * 26	6 21 6 22 6 23	¢ 19	e 17	e 14	r r		r F	F F F	E E -	
				5			-					

Breadboard Notes

- Metal lines running vertically (and two typically used for Vdd/gnd running horizontally)
- Solderless is the big benefit
- Don't force too big wires in, will break
- Don't put huge voltages in
- It does have certain amount of resistance/capacitance but usually not a problem unless high frequency designs

DVM – Digital Volt Meter

DVM Notes

- Assuming you've used one before
- Don't blow it up
- Only measuring Resistance in this lab. Try not to stick in powered circuit when measuring R.
- Careful when measuring, especially voltages
- When measuring resistances don't hold to probe with finger, especially with high resistor (Megaohm) values.

Why?

Resistor Digression

Resistor Digression

Brief aside on the actual resistance of 5% tolerance resistors. What do the bands mean? The gold band?

Function Generator

Function Generator Notes

- Plug in your probe to the bottom connector, labeled "output"
- First pick the type of waveform (sine, square, triangle, etc)
- Then choose frequency. Can spin the dial, or push the green "Enter Number" button and press number and MHz/KHz buttons
- Amplitude button. Set same as frequency.

- Note: amplitude assumes 50 Ohm load. When hooking to o-scope is High-Z load. Therefore in this lab peak voltage is twice what you expect when reading on o-scope.
- Question: difference between "peak" voltage and "peakto-peak" voltage.

Oscilloscope

Oscilloscope Zoomed

Oscilloscope Notes

- Nice vintage scopes with green CRT displays. Would have been newish when I was an undergrad.
- Still, they are somewhat advanced. Not just wires connecting more or less directly to the CRT deflector plates like in old days.
- Many advanced features (see the manual). For this lab we are just doing simple measurements.
- Hook your probe to the 1x Input

- Black lead to ground, red to signal you want to probe.
- "Auto-Scale" button is your friend.
- Can eyeball voltage from the display. To measure you can press "Voltage" then pick corresponding Vp-p on button on bottom of screen.
- Measuring time (frequency, period) is similar.
- Zooming: to zoom in/out voltage wise twirl the volts/div knob
 For time, using the time/div knob

- The scope can measure rise time. Press time / measure / more options / rise time.
- On some (but not all?) of the scopes in the lab you can use the "cursor" button to set high and low voltage references, set a 100% mark, and easily find where things like the RC time constant happen at a specified percentage.

LCR Meter

LCR Meter Notes

- Only one in lab, in front left station
- Hook device to measure between probes
- Discharge capacitors before measuring!
 How? Across resistor. If a bigger sized cap, things like screwdrivers, wire, your fingers, all bad ideas.
- Use the L/C/R button to choose C.
- \bullet There's a D// button to get to Dissipation factor

Lab Notebooks – Table of Contents

Page 155	Table of Contents Lab #0 - Fake Lab for Example Rupposes	1 19 Jan 2015
Roge 3	Lab #1 - Test Equipment Coading	20 Jan 2015

Lab Notebook – Barebones Sample

Lab #0 - Fake Lab Tom Prime 19 Jan 2015 Tring husbon. This is a placeholder Lub, not a real one, maining b show one example of what a Lub Nothbook mapt lock like. 1. Praw a stre wave : 12 2 Draw a simple cere circuit ist 100.2 20 LMM DT 2 Lab Procedure 1. Build the circuit from your pre-lab. 2 Measure Pre value of the resistor with the DUM RI= 99.8.2 3. Measure the Voltage drop across the revision. of Invalle picture of circuit My savante part of this lab we to LEDS.

Lab Notebook

- Reserve room for ToC
- Date and sign each page
- Do not skip pages or leave blank space
- Always use ink
- Any extraneous work should be taped in place (initial)
- Write the lab procedue (What you did). Someone should

be able to reproduce your work.

