
ECE271: Microcomputer Architecture and Applications — University of Maine

Lab #1: Joystick Button Input and LED Output
Week of 28 January 2019

Goals
1. Become familiar with the cross-development environment: (Keil µVision or Linux)
2. Write a C program that will run on the STM32L4 discovery board
3. Learn basics of GPIO configuration
4. Use GPIO for input (read from joystick button)
5. Use GPIO for output (display LED)
6. Learn about polling I/O

Grading Rubric for 271 Labs – Total of 20 points each
1. Pre-lab assignment (2 points)
2. Documentation and Maintainability (5 points)
3. Functionality and Correctness (5 points)
4. Lab Demonstration (5 points)
5. Something cool (3 points)

Pre-lab
1. Complete the pre-lab before attending lab. The pre-lab is in a separate pdf file, found on the website.

Lab Procedure
Using Chapter 14 of the text book as a reference, implement a C program that causes the red LED to light
up when the joystick is pressed up, and the green LED to light up when the joystick is pressed down. Do
this lab in three parts, as described below.

Part A – Lighting up the LEDs
1. There are two user-controllable LEDs (light-emitting diodes) on the STM32L4 discovery board. The

red one is connected to GPIO-PB2 (GPIO Port B Pin 2) and the green one is connected to GPIO-PE8
(GPIO Port E Pin 8). You can see a schematic of how they are physically connected in Figure 1. The
LEDs are surface mount and a bit hard to see; you can find their location on the board in Figure 2.

2. To turn on the LEDs you will do the following five steps:

(a) Enable the clock for the corresponding GPIO ports (by default they are disabled).

(b) Set the mode of the GPIO pins to be output (by default they are analog).

(c) Set the push-pull/open-drain setting for the GPIO pins to push-pull.



Figure 1: LED setup on the STM32L4

(d) Set the pull-up/pull-down setting for the GPIO pins to no pull-up/pull-down.

(e) Finally, set the output of the GPIO pin to have a value of 1 (corresponding to 3.3V)

3. For this lab we will program in C.

(a) First download the Lab1 template ece271_lab1.zip. This will be on the course website.

(b) See if you can build the template code. It should build, but not do anything yet.

i. Extract the template zip file somewhere you can find it.
ii. Start Keil µVision.

iii. Open the project from Keil, click on the uvproj file.
iv. Click on the “build” button to build. This is near the top left, and looks like a box with an

arrow going into it. See Figure 3 if you have trouble finding the icon.
v. Now edit the main.c file in the editor. Modify the C as described below.

(c) Modify the main.c file to enable the registers you need to turn on the LEDs. You should have
already calculated the values you need to write in the Pre-lab. If you want a reference for what
you are programming see the “RM0351 Reference manual: STM32L4x5 and STM32L4x6 ad-
vanced Arm-based 32-bit MCUs”

You will use bitwise operations to set/clear the registers. Some of this might seem repetitive.
Feel free to use function calls or other more advanced C methods if you feel like it helps.

i. Enable the GPIOA, GPIOB, and GPIOE blocks via the AHB2ENR register. You should
have calculated the values for this in the pre-lab.

The provided stm32l476xx.h header file provides some helpers to make this easier. The
memory-mapped I/O has been set up to point to the various structures with a volatile pointer.

For example, to set the GPIOCEN GPIO block C enable bit int the AHB2ENR register, you
would do something like the following.
RCC->AHB2ENR |= (1<<2);

ii. Now set the GPIOB Pin 2 MODER output register to be the right value for output, as calcu-
lated in the prelab.
GPIOB->MODER

iii. Do the same for the push-pull setting in
GPIOB->OTYPER

2



LCD Display

USB Power/Program

LEDs

Reset

Joystick

STM32L476 CPU

Audio Out

Microphone

Figure 2: Rough diagram of components on STM32L4 board.

iv. Set the no-pull-up no pull-down setting in
GPIOB->PUPDR

v. Finally to actually enable/disable the LED we will need to set the proper bit in the output-
data register
GPIOB->ODR

We didn’t do this in the pre-lab, so to turn on GPIO on pin#X just set bit#X to 1.
vi. Repeat the above steps, but do them for GPIOE pin 8 for the green LED.

vii. At the end of your code put an infinite loop to keep the code from executing off the end of
your program. This would look something like
while(1) ;

(d) While doing this, be sure to comment your code appropriately!

(e) Now compile/build your code.

i. Press the “build” button. Check the window at the bottom for warnings and especially for
errors. The IDE will show little error icons by your code too if it detects any.

ii. Now plug the board into your laptop with the USB cable if you haven’t already.
iii. Now download your code to the board by pressing the “download” button. Again see Fig-

ure 3 for guidance on what that looks like.

3



Figure 3: Useful things to click in µVision.

NOTE there is a demo program that comes with the board that might confuse Keil so it will
refuse to program. There are a few ways to get around this. One that is known to work is
described in Figure 4.

It is possible also if your code is buggy to confuse things so much that Keil can’t program
the board any more. In that case you might need to use the ST-Link program to zero out the
memory so you can try again.

(f) If the download/flash went well, it’s time to run your program

i. Click on the “Debug” button, which looks like a red magnifying glass. This will bring you
into the debug section. To return to the build section just click on the red magnifying glass
again.

ii. Click on the “Run” button. (Note, should link to a picture) It’s on the left and looks like a
down arrow?

iii. If all goes well your program ran and your LEDs should light up!
iv. You can do some other interesting stuff with the debugger. You can reset to the beginning.

You can single-step your code, which let’s you see each step as it happens. You can monitor

4



memory, and variables, and even poke around with variables too.

(g) If your code isn’t working you will have to debug it. The debugging options might help.

(h) If something goes so poorly that µVision won’t flash your board anymore, you might have to use
ST-Link to erase your board and the carefully step through the code to see what has gone wrong.

Figure 4: The “Target Not Found” error: When you program the STM32L4 board for the first time it might
give this error, as the demo is running and interferes with the programming by setting the board into a low-
power mode. One way to fix is in Keil to click “Project”, “Options for Target”, follow “Debug” and then
“Settings” and change the connect from “normal” to “with pre-reset”.

Part B – Joystick Buttons
1. There is a light-blue diamond shaped Joystick on the STM32L4 board (you can find its location in

Figure 2). This consists of 5 buttons; the 4 directions as well as center when pressed. These buttons
are connected to PA0, PA1, PA5, PA2, and PA3 as shown in Figures 5 and 6).

2. As you can see, there is a common input to the joystick which is pulled up to 3V. When any of the
buttons are pressed this creates a connection to this 3V. These outputs are hooked to the various GPIO
pins. There are resistors and capacitors providing hardware debouncing. Note that only the center has
a pull down resistor; the others are left floating. If we want to read the output of the other buttons
properly we will have to configure a GPIO internal pull-down resistor.

3. To read the state of the joystick you will have to do the following:

5



Figure 5: Joystick setup on the STM32L4

Figure 6: Joystick connections. Note that capacitors and resistors are there to provide hardware debounc-
ing. Also note that only the center button has a pull-down resistor connected.

(a) Enable the clock for the corresponding GPIO ports (by default they are disabled).

(b) Set the mode of the GPIO pins to be input (by default they are analog).

(c) Set the pull-up/pull-down setting for the GPIO pins to have a pull-down.

(d) Finally, read the status of the corresponding GPIO pin.

4. You will do the above in C.

(a) Modify your code to have an infinite loop. Each time through the loop read the status of the UP
and DOWN GPIOs. If UP is high, then light the red LED, otherwise turn it off. If DOWN is
high, then light the green LED. Otherwise turn it off.

i. You should have already enabled GPIO bank A in Part A of the lab. If you didn’t, make sure
your code properly sets the enable bit.

ii. Now enable the joystick GPIO pins so that the proper pins in MODER are set to be inputs.
GPIOA->MODER

iii. Set each joystick GPIO to be pull-down in the PUPDR register.
iv. Finally to read the value read the corresponding bit in the IDR (input-data) register. To read

the status on GPIO pin#X just check if bit#X is 1 or 0. You can use a bitwise and instruction
with a proper mask to check this.

(b) Once everything goes well, the two LEDs should be light when the button is pressed. If it doesn’t
work you will have to debug your code to find out what is wrong.

6



Part C – Something Cool
Do something cool! You can come up with something on your own, but here is a list of ideas you can use.

1. Have the LEDs start blinking when you press the joystick button and stop when you press it again.

2. Write a program that sends a Morse Code message using one of the LED. You will have to research
how to create a delay in C.

3. Use an oscilloscope to show the voltage on the RED led and the voltage on the output of the up joystick
button. Find the latency (how long it takes) between the button being pressed and the LED lighting
up.

4. Use the software logic analyzer provided by the MDK-KEIL software to analyze the input and output
signals.

5. Change the output clock speed and use an oscilloscope to see how that affects the output speed.

7



Table 1: STM32L4 board pin connections.
Peripheral Purpose Pin Peripheral Purpose Pin

Center PA0 VLCD PC3
Joystick Left PA1 COM0 PA8

MT-008A Right PA2 COM1 PA9
Up PA3 COM2 PA10

Down PA5 COM3 PB9
User LD4 Red PB2 SEG0 PA7
LEDs LD5 Green PE8 SEG1 PC5

SAI1_MCK PE2 SEG2 PB1
SAI1_FS PE4 SEG3 PB13

CS43L22 SAI1_SCK PE5 SEG4 PB15
Audio DAC SAI1_SD PE6 SEG5 PD9

i2c 0x94 I2C1_SCL PB6 SEG6 PD11
I2C1_SDA PB7 SEG7 PD13
Audio_RST PE3 SEG8 PD15

MP34DT01 Audio_DIN PE7 LCD SEG9 PC7
MEMS MIC Audio_CLK PE9 SEG10 PA15

MAG_CS PC0 SEG11 PB4
MAG_INT PC1 SEG12 PB5

LSM303C MAG_DRDY PC2 SEG13 PC8
eCompass MEMS_SCK PD1 SEG14 PC6

MEMS_MOSI PD4 SEG15 PD14
XL_CS PE0 SEG16 PD12
XL_INT PE1 SEG17 PD10

MEMS_SCK PD1 SEG18 PD8
MEMS_MOSI PD4 SEG19 PB14

L3GD20 MEMS_MISO PD3 SEG20 PB12
Gyro GYRO_CS PD7 SEG21 PB0

GYRO_INT1 PD2 SEG22 PC4
GYRO_INT2 PB8 SEG23 PA6
USART_TX PD5 OTG_Pwr_On PC9
USART_RX PD6 OTG_FS_OvrCurrent PC10

ST-Link V2 SWDIO PA13 USB OTG OTG_FS_VBUS PC11
SWCLK PA14 OTG_FS_ID PC12

SWO PB3 OTG_FS_DM PA11
3V3_REG_ON PB3? OTG_FS_DP PA12

QSPI_CLK PE10 OSC32_IN PC14
Quad SPI QSPI_CS PE11 Clock OSC32_OUT PC15

Flash Memory QSPI_D0 PE12 OSC_IN PH0
QSPI_D1 PE13 OSC_OUT PH1
QSPI_D2 PE14
QSPI_D3 PE15

8



Lab Demo
Student Name: TA: Date:

1. Submit your code

• Complete a README with the post-lab (next page) answers.

• Make sure the code is properly commented.

• Submit your code. Push it via git to gitlab. Directions on how to do this will be posted to the
course webpage.

2. Demo your implementation to your lab TA.

3. Answer the following questions and show to the TA.

• Why did we configure the LED pins to be push-pull rather than open-drain?

• What is GPIO output speed? What is the default speed? Did changing speeds affect the lab?

9



Post-Lab
• Place your answers to the question in a file Readme.md

• Submit with your code via e-mail (see the Lab Demo section)

1. The joystick buttons on the STM32L4 board have hardware debouncing. An example of this can be
seen in Figure 5. Explain briefly how this works.

2. Debouncing can also be done in software. Explain how this could be done in software.

3. Each GPIO in has for programmable output speeds. Low, medium, fast, and high. The slew rate can
be up to 80MHz. Why is the “low” speed recommended for controlling LEDs? (Hint: energy and
electromagnetic interference)

10


