
ECE271: Microcomputer Architecture and Applications — University of Maine

Lab #10: Analog to Digital Converter (ADC)
Week of 15 April 2019

Goals
1. Understand basic ADC concepts (successive approximation, sampling error, resolution, and data align-

ment).
2. Map a GPIO pin to an ADC input.
3. Understand the tradeoff between conversion accuracy and conversion speed.

Pre-lab
1. Complete the pre-lab before attending lab. The pre-lab is in a separate pdf file, found on the website.

Lab Procedure
The first part of this lab is using the Analog/Digital Converter (ADC) to measure the voltage generated by
a potentiometer operating as a voltage divider. The second part of the lab is using the ADC to measure the
output of an Infrared (IR) photodiode.

Part A – Initial Setup
1. You can use a previous lab as a template, but in general we aren’t really re-using any code from

previous labs (except maybe the part where we light up the red LED).

2. If you’re using Linux, I’ve posted an updated template to the website that has some more definitions
in the header file that will be helpful with this lab.

Part B – Set up the ADC
1. We will be following the flowchart in Figure 20-12 in the textbook.

2. Make sure the HSI clock is turned on so the ADC can use it.

(a) You can follow the directions in the flowchart, or else just reuse the code from the last lab and
have the whole board use the HSI clock.

3. Set up Pin A1 for analog input.

(a) You should have calculated these values in the prelab.

(b) Also be sure you enable the RCC_AHB2ENR_GPIOAEN clock.

4. Set up Pin B2 (the red LED) to be ready for output, as you have done on previous labs.



5. Set up the ADC. This is a really long and complicated process. Use the flowchart, and also the manual
(around roughly page 600) should help.

(a) Enable the ADC clock bit RCC_AHB2ENR_ADCEN in register RCC->AHB2ENR.

(b) Disable ADC1 (as we can only modify the settings if it is disabled) by clearing ADC_CR_ADEN
in ADC1->CR.

(c) Enable the I/O analog switches voltage booster, SYSCFG_CFGR1_BOSTEN in SYSCFG->CFGR1.

(d) Enable conversion of internal channels by setting ADC_CCR_VREFEN in ADC123_COMMON->CCR.

(e) Configure the ADC prescaler to have the clock not divided (which involves setting all bits to
zero) ADC_CCR_PRESC in ADC123_COMMON->CCR.

(f) Select synchronous clock mode (HCLK/1) (0b01) via ADC_CCR_CKMODE in ADC123_COMMON->CCR.

(g) Configure all ADCs as independent by clearing ADC_CCR_DUAL in ADC123_COMMON->CCR.

(h) The ADC comes up in deep sleep mode. To wake it up you’ll want to call a ADC1_Wakeup()
function. The code for this is provided in Example 20-4 in the textbook.

(i) Configure the ADC to have 12-bit resolution (0b00) in ADC_CFGR_RES in ADC1->CFGR.

(j) Set right-alignment of the 12-bit result inside the results register by clearing ADC_CFGR_ALIGN
in ADC1->CFGR.

(k) Select 1 conversion in the regular channel conversion sequence with by clearing. ADC_SQR1_L
in ADC1->SQR1. (Example 20-6 in the textbook has code for this and the next two steps).

(l) Specify channel #6 as the 1st conversion by setting “6” in the proper place in the ADC1->SQR1
register.

(m) Set channel #6 to be single ended by clearing ADC_DIFSEL_DIFSEL_6 in ADC1->DIFSL.

(n) Select the ADC sampling time. It’s unclear to me what value to set here? I set it to “1”.
ADC_SMPR1_SMP6 in ADC1->SMPR1.

(o) Select ADC to discontinuous mode by clearing ADC_CFGR_CONT in ADC1->CFGR.

(p) Select software trigger by clearing ADC_CFGR_EXTEN in ADC1->CFGR.

(q) Enable ADC1 by setting ADC_CR_ADEN in ADC1->CR.

(r) Wait until ADC1 is ready by waiting for the ADC_ISR_ADRDY bit in ADC1->ISR to go high.

Part C – Set up the Potentiometer
1. Get a 10k potentiometer from the parts closet.

2. Connect it to the pin PA1 following the diagram in Figure 1.

3. The potentiometer acts as a voltage divider, the output to PA1 should vary from ground to 3V as you
turn the dial.

4. If you still have the keypad hooked up, you probably want to disconnect it from pin PA1 so it won’t
interfere with the measurements.

2



Figure 1: Potentiometer based voltage divider.

Part D – Measuring the Value
1. In main, have a while loop that does a manual software trigger of the ADC. See the last part of the

textbook Figure 20-12 flowchart.

2. Start a conversion by setting ADC_CR_ADSTART bit in ADC1->CR register.

3. Wait until the ADC_CSR_EOC_MST bit goes high in ADC123_COMMON->CSR, which means a suc-
cessful conversion has completed.

4. Read the value ADC1->DR for the converted value. Store this value to a global variable. To view it,
set up a debugger watch on the variable as you did in the previous lab.

5. If all went well, turning the potentiometer should change the value from 0 to roughly 4096 (0 to
0xfff in hex).

Figure 2: QSD124 Infrared Phototransitor (receiver).

3



Figure 3: IR333-A Infrared LED (transmitter).

Figure 4: Connection diagram.

Figure 5: Proximity sensor.

4



Part E – Set up the IR Proximity Sensor
1. We will implement a simple proximity sensor using an infrared LED and receiver. The infrared light

will leave the transmitter, and reflect off a nearby object and cause current to flow in the receiver. This
will lead to a voltage proportional to the intensity of the light.

You might want to put some sort of partition between the sender and receiver so stray light doesn’t go
between them.

We will provide the transmitter/receiver, you can get the 82 Ohm resistor (the diagram shows 80 Ohm
but 82 is close enough) and 2.2k resistor from the parts cabinet.

Some more info on this can be found in Figures 2 through 5.

2. Hook PA1 to the proper point on the phototransistor and watch the ADC value in the debugger like
you did with the potentiometer.

Part F – Something Cool
Do something cool! You can come up with something on your own, but here is a list of ideas you can use.

1. Measure distance with the IR LED.

2. Show the ADC results on the LCD

3. Use the potentiometer to control the stepper motor or servo motor.

4. Count the times your hand goes near the IR LED and display the count on the LCD.

5. Use a timer to periodically trigger the ADC.

6. Use the analog watchdog in the ADC to trigger an event (an LED come on?) when something gets too
close to the sensor.

5



Lab Demo
1. Submit your code

• Complete a README with the post-lab answers.

• Make sure the code is properly commented.
This includes a header at the top of your main.c with your name and a brief summary of the lab.

• Check your code and README into your gitlab tree.

2. Demo your implementation to your lab TA.

(a) Demonstrate that the value returned by the ADC varies when you use the potentiometer.

(b) Demonstrate that the value returned by the ADC varies when using the Infrared sensor.

Post-Lab
• Place your answers to the question in a file Readme.md

• Submit with your code via the gitlab server.

• Questions:

1. Potentiometer

(a) Set the potentiometer to near the middle and measure the voltage on the PA1 pin with a
voltmeter:
_____________

(b) In the debug environment, find the value of the ADC DR register:
_____________

(c) Calculate what the reference voltage must be in order to fit the previous two values you
measured:
_____________

6


