
ECE 271 – Microcomputer
Architecture and Applications

Lecture 4

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

31 January 2019

http://web.eece.maine.edu/~vweaver


Announcements

• Read Chapter #1 of the book.

• We have a grad TA, Colin Leary, who will be having

office hours on Wednesday at 2pm.

1



Gitlab Update

• I have posted the initial gitlab directions to the course

website

• This was delayed due to the course website (the whole

ECE website) being down yesterday. Hopefully that

won’t happen again.

2



LCD stuff for Lab

• Chapter 17. A bit confusing at times. 17.4 and after is

just informational, not useful for this lab.

• For a detailed view see Microchip AN658.

• What is a Liquid Crystal Display? How is it different

from LED?

Polarized light, crystals that change polarization when

apply power

• Fairly low power (compared to LED at least)

• Need some sort of backlight

3



• Applying DC voltage for too long can damage, so circuit

must provide an AC voltage centered on zero.

4



Static LCD

• Common and segment. Square wave to common, square

to segment

• If in phase, voltage across is zero, off

• If out of phase, voltage across is +/-V, which has display

on

5



Multiplexed

• Static vs Multiplexed: static each pin drives one segment.

Would take 96 GPIOs

• Duty Ratio vs Bias

• Duty Ratio of 1/3 means three segments, driving any

given one 1/3 of time

• Our board has duty ratio of 1/4, so can drive with 28

pins (24 + 4 common)

• It is less bright with higher duty ratio.

• Complex series of alternating voltage levels needed for

6



this. See the textbook for full details.

7



LCD on our board

• Static vs Multiplexed: static each pin drives one segment.

Would take 96 GPIOs

• Our board has duty ratio of 1/4, so can drive with 28

pins (24 + 4 common)

• 14-segment chars*6, colon, decimal point, 4 bars

• We don’t have to drive the raw voltages (thankfully) but

we do have 28 GPIOs to drive, and they are scattered

about somewhat randomly :(

8



Steps to Program Them

• LCD Clock Initialization

◦ Disable RTC clock protection (LCD+RTC share same

clock)

Write “secret code” 0xCA and 0x53 to register

◦ Enable LSI clock

◦ Select LSI as LCD clock source

◦ Enable LCD/RTC clock

• Configure LCD GPIO Pins to be LCD (Alternative mode

11 0xd)

9



◦ PortA: 6,7,8,9,10,15

◦ PortB: 0,1,4,5,9,12,13,14,15

◦ PortC: 3,4,5,6,7,8,11

◦ PortD: 8,9,10,11,12,13,14,15

• LCD Config

◦ Set BIAS to 1/3

◦ Set Duty to 1/4

◦ set contrast to max

◦ Set pulse on value

◦ Disable MUX SEG

◦ Select interval voltage

10



◦ Wait for FCRSF

◦ Enable LCD

◦ Wait to see if enabled

◦ Wait for LCD booster to be ready

• LCD loop

◦ Spin waiting for LCD RAM to not be protected

◦ Once available, update the LCD RAM memory

7 bytes corresponding to the pins we want to turn on

◦ Set the UDR flag which says we want to update the

display with our value

◦ Wait for update to finish, then loop

11



Steps to Program Them

• Work out what you want to display. Which segments

• Then look at huge lookup table to see what pins

correspond to this

• Then set this in the RAM

• You can make a function/lookup that automates this.

12



Why double-buffering

• Write to one buffer, display to another. Then when

ready, swap (display first, write to second). Repeat.

• Avoids tearing – when you are displaying partially old

and partially new data

• Avoids flicker

13



Intro to Computer Architecture

14



Parameters in an Architecture

• CISC vs RISC

• 8/16/32/64 bits

• Endianess

• Load/Store

• Instruction Size (fixed/variable)

• Number of commands to opcode

• Weird: Branch Delay slot / Zero register

• Number of registers, special registers

• Flags

15



Memory/Code

• Harvard vs von Neuman Architecture

• Harvard – instruction stream completely separate from

data

• von Neuman – instructions are in general memory

16



Cotex-M4

• Like M3 but some DSP and floating point instructions

• Hardware multiply/divide and saturating instructions

• In-order, 3-stage pipeline, branch speculation, no caches

• Thumb-2 architecture

17



ARM Instruction Set Encodings

• ARM – 32 bit encoding

• THUMB – 16 bit encoding

• THUMB-2 – THUMB extended with 32-bit instructions

◦ STM32L only has THUMB2

◦ Original Raspberry Pis do not have THUMB2

◦ Raspberry Pi 2/3 does have THUMB2

• THUMB-EE – extensions for running in JIT runtime

• AARCH64 – 64 bit. Relatively new. Completely different

from ARM32

18



Thumb-2 encoding

ADD{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15-11: 11101

10-9: 01

8-5: 1001

4: S

3-0: Rn

15: 0

14-12: imm3

11-8: Rd

19



7-6: imm2

5-4: type

3-0: Rm

20


