
ECE 271 – Microcomputer
Architecture and Applications

Lecture 5

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

5 February 2019

http://web.eece.maine.edu/~vweaver


Announcements

• Read Chapter #3 and #4 of the book.

• We have a grad TA, Colin Leary, who will be having

office hours on Wednesday at 2pm.

If earlier/later/different day might work better for

everyone, let me know.

• Reminder: no food or drink in the labs

1



Gitlab Update

• Hopefully it is working. Not as stable as it should be.

• Be sure you create your own ECE271 project before

pushing to it

• Pushing issues if off campus or eduroam?

For security probably blocking ssh access from off campus

New eduroam probably not whitelisted yet

• way git works, you have a full repository/versioning

locally. the push just syncs things so other people can

see it

2



• How do ssh keys work?

Public Key Cryptography, interesting, but could give a

whole lecture on it

We talk about this in ECE435 (Network Engineering)

but that course might not be offered next year.

3



More Lab Notes

• Don’t look at provided character translation code, it’s

horrible

• What is the deal with uint8 t vs char?

• Something else the code does, copying data and bss

segments

• Strings in C, pointers

• Commenting styles, Doxygen

• Using the predefined constants in stm32l476xx.h

• How do you make a delay? For loop? Don’t forget the

4



volatile.

5



Thumb-2 encoding

ADD{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 1 1 0 0 1 S Rn 0 imm3 Rd imm2 type Rm

6



Registers

• How are registers designed? SRAM (static RAM: flip-

flops)

Aside: main memory on a desktop/laptop is DRAM

(dynamic RAM) with one transistor and a capacitor,

which drains quickly and has to be constantly refreshed.

• Three ports: two output and one input

• The rules for what goes in what register are part of the

ABI (Application Binary Interface)

• ARM32 registers:

7



◦ Has 16 GP registers (more available in supervisor

mode)

◦ r0 - r12 are general purpose

◦ r11 is sometimes the frame pointer (fp) [iOS uses r7]

◦ r13 is stack pointer (sp)

◦ r14 is link register (lr)

◦ r15 is program counter (pc)

reading r15 usually gives PC+8

◦ 1 status register (more in system mode).

NZCVQ (Negative, Zero, Carry, oVerflow, Saturate)

8



3-stage pipeline

• Fetch/decode/execute

9



Assembly Language: What’s it good for?

• Understanding your computer at a low-level

• Shown when using a debugger

• It’s the eventual target of compilers

• Operating system writers (some things not expressible in

C)

• Embedded systems (code density)

• Research. Computer Architecture. Emulators/Simulators.

• Video games (or other perf critical routines, glibc, kernel,

etc.)

10



Let’s start with ALU instructions

• a=b+c;

• How is ALU designed? Adder/subtractor/logic?

11



Add instruction

• add r1,r2,r3 – r1=r2+r3

• Gets the values, adds two, stores in third

12



What does an assembly line look like

• annoyingly this can vary by platform, and even by

assembler program on the same platform. (could be

worse, intel vs at&t on x86)

• GNU asm style:

label: opcode dest, src1, src2 ; comment

/* comment */

• Keil style:

13



label

opcode dest, src1, src2 ; comment

• Label marks a point in the program. If you reference

it the assembler will turn it to an address. You can

do things like jump/branch/goto it. You can load

from/store to it.

• The opcode or mnemonic says what you want to do.

add/sub/eor, etc

14



Assembly Directives: Keil / GNU

• Put this in your code to give the assembler directions

• Things like where to reserve memory, where functions

start, etc.

• Slightly different from Keil to GNU (GNU starts with a

. )

15



Add instruction

• add r1,r2,r3 – r1=r2+r3

• add r1,r2,#immediate r1=r2+constant

There are limits to constant size. Why?

The thumb2 constants are exciting, will get to later

16



Settings Flags

• adds r1,r2,r3 – set condition flag

flags NZCV

◦ N = negative (how can you tell if negative?)

◦ Z = zero (how can you tell if zero?)

◦ C = carry (how can you tell if carry? Why is it useful?)

◦ V = overflow (will get to this later), signed overflow

◦ Q = saturate

17


