ECE 271 — Microcomputer
Architecture and Applications
Lecture ¢

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

12 February 2019


http://web.eece.maine.edu/~vweaver

Announcements

e Read Chapter 5

e President’'s Day Monday: People in Monday lab should
attend another lab if possible (Wednesday is often a
good choice)

e In the unlikely event lab is cancelled due to snow, check
In your git code normal time, and then show up at an
alternate lab to get checked off.



General Lab Update

e Note: Keil compiler old. Can’t use O0b1000 constants,
can't declare in middle

e C is old. There are various versions and standards, and
Keil implements an older one than gcc



LCD Lab Update

e Almost always the issue is you are setting one of the
register fields wrong

e It is tough that everything has to be perfect for it to
work, making debugging hard

e Sadly real-world programming can be like this



Keypad Lab

e Why | split the code up in 3 chunks
e How to debug.

o Use the debugger.

o Use a multi-meter?

o Print to the LCD
e Reminder in C of how strings work.

char s[7]; // 0..6, room for nul
s[6]1=0;
s[0]1=('"!'(GPIOA->IDR&(1<<2)))+°0";
LCD_Display_String(s);

e Why can't you



LCD_Display_String(keypad_scan());




Moves

e mov r0,rl

e movn r0,rl



Loading a Constant

e mov r0,#8 — constant, up to 8 bits

e movw r0,#imm16 — move 16 bits to bottom of register
(and clear top)

e movt r0,#imm16 — move 16 bits to top of register (leave
bottom)

e [dr r0,=imm32 — old fashioned way, using global table
Usually a PC relative load

-y g



Load

e Idr r0, [r1] — load 32-bit value from pointer rl into r0Q

e Idr rQ, [r1,#4] — pre-index, load 32-bit value from pointer
(r14-4) into r0
useful for structs, things like

GPIOA->0DR

e Idr rO, [r1,#4]! — pre index with update. load 32-bit
value from pointer (r1+4) put in r0. Then add 4 to rl
and update rl.

-y g



e [dr r0, [rl],#4 — post-index. Load 32-bit value from
pointer rl into rO. Then add 4 to rl and store in rl.



Load Different Sizes

e What if you don't want to load 32-bits?

e |[drb — load byte into register

e |drh — load half-word (16-bits)
e |drsb — load signed byte (sign-extend to fill 32-bits)

e |drsh — load signed half-word (sign-extend)

10



Stores

e str r0,[rl] — store 32-bit value in rO to memory pointed
to by rl

e strb
e strh
e any need for sign extend?

e can do same addressing modes, I1.e. post-index, etc

/Y 11



PC Relative Load/Stores

e Remember that r15 is PC

e This is how the syntax

ldr =0xdeadbeef
turns into
1005c: 480Db 1dr r0, [pc, #44] ; (1008c

1008c: Oxdeadbeef

12



Load/Store Multiple

e Powerful
e STMIA rn!, register list

e for example

stmia r13, {r0,r1,r2,r3}

o if I then writeback, meaning the address of the final
thing is put into the register (like a stack)

e What happens if LR is in STM and then PC is in LDM?

-y 13



e L DM the opposite

e IA, IB (increment before / increment after)

e DA, DB (decrement before / decrement after)

e can use PUSH/POP to do the same but assume r13

e PUSH/POP

e returning from a function trick?

push {rO0,r1,r2,1r}

pop {rO,rl1,r2,pc}

14



