
ECE 271 – Microcomputer
Architecture and Applications

Lecture 7

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

12 February 2019

http://web.eece.maine.edu/~vweaver

Announcements

• Read Chapter 5

• President’s Day Monday: People in Monday lab should

attend another lab if possible (Wednesday is often a

good choice)

• In the unlikely event lab is cancelled due to snow, check

in your git code normal time, and then show up at an

alternate lab to get checked off.

1

General Lab Update

• Note: Keil compiler old. Can’t use 0b1000 constants,

can’t declare in middle

• C is old. There are various versions and standards, and

Keil implements an older one than gcc

2

LCD Lab Update

• Almost always the issue is you are setting one of the

register fields wrong

• It is tough that everything has to be perfect for it to

work, making debugging hard

• Sadly real-world programming can be like this

3

Keypad Lab

• Why I split the code up in 3 chunks

• How to debug.

◦ Use the debugger.

◦ Use a multi-meter?

◦ Print to the LCD

• Reminder in C of how strings work.
char s[7]; // 0..6, room for nul

s[6]=0;

s[0]=(!!(GPIOA ->IDR &(1 < <2)))+’0’;

LCD_Display_String(s);

• Why can’t you

4

LCD_Display_String(keypad_scan ());

5

Moves

• mov r0,r1

• movn r0,r1

6

Loading a Constant

• mov r0,#8 – constant, up to 8 bits

• movw r0,#imm16 – move 16 bits to bottom of register

(and clear top)

• movt r0,#imm16 – move 16 bits to top of register (leave

bottom)

• ldr r0,=imm32 – old fashioned way, using global table

Usually a PC relative load

7

Load

• ldr r0, [r1] – load 32-bit value from pointer r1 into r0

• ldr r0, [r1,#4] – pre-index, load 32-bit value from pointer

(r1+4) into r0

useful for structs, things like
GPIOA ->ODR

• ldr r0, [r1,#4]! – pre index with update. load 32-bit

value from pointer (r1+4) put in r0. Then add 4 to r1

and update r1.

8

• ldr r0, [r1],#4 – post-index. Load 32-bit value from

pointer r1 into r0. Then add 4 to r1 and store in r1.

9

Load Different Sizes

• What if you don’t want to load 32-bits?

• ldrb – load byte into register

• ldrh – load half-word (16-bits)

• ldrsb – load signed byte (sign-extend to fill 32-bits)

• ldrsh – load signed half-word (sign-extend)

10

Stores

• str r0,[r1] – store 32-bit value in r0 to memory pointed

to by r1

• strb

• strh

• any need for sign extend?

• can do same addressing modes, i.e. post-index, etc

11

PC Relative Load/Stores

• Remember that r15 is PC

• This is how the syntax

ldr =0 xdeadbeef

turns into

1005c: 480b ldr r0 , [pc , #44] ; (1008c

......

1008c: 0xdeadbeef

12

Load/Store Multiple

• Powerful

• STMIA rn!, register list

• for example
stmia r13 , {r0,r1,r2,r3}

• if ! then writeback, meaning the address of the final

thing is put into the register (like a stack)

• What happens if LR is in STM and then PC is in LDM?

13

• LDM the opposite

• IA, IB (increment before / increment after)

• DA, DB (decrement before / decrement after)

• can use PUSH/POP to do the same but assume r13

• PUSH/POP

• returning from a function trick?
push {r0 ,r1 ,r2 ,lr}

...

pop {r0 ,r1 ,r2 ,pc}

14

