
ECE 271 – Microcomputer
Architecture and Applications

Lecture 14

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

7 March 2019

http://web.eece.maine.edu/~vweaver

Announcements

• Read Chapter 10

• Midterm, Tuesday, 12 March

• Reminder, no new lab next week, tie up loose ends in

old labs

1

Lab #6 Update

• Hopefully it is going OK.

• Please try to catch up on the labs...

2

Midterm Review

• Closed book/notes.

• Short answer.

• Will be on mostly C and assembly language

• I expect you to know at least basic C

• This includes being able to set/clear bits using the bitwise

logic operations

• Assembly language, I will provide a table of THUMB2

instructions so no need to memorize.

• Things like, what does this code do? Or, add comments

3

to this code, or, what is wrong with this code.

• GPIO, LCD, Scanning, Stepper

• Basic understanding of what the hardware is doing, but

not super detailed

• No need to memorize all of the MODER register fields,

etc.

• Questions may be similar to those on pre/post-lab

• One thing we did not have a question on but important

to know is twos complement, and how calculation of

overflow flag works

• Also stack. Where do local vars go?

4

• ABI, know why we have one. Where args go.

5

Chapter 10 – Mixing C and Assembler

• More ABI: data sizes

• Data alignment in structs

what happens if unaligned?

• Can you force alignment to be packed? Why? packed

or other attribute

6

Var types

• static – make act as global

• volatile

• Local vars. Why encouraged not to use globals?

7

Symbols in Other Files

• When you use a name (variable name, function name,

etc) the compiler/assembler doesn’t necessarily resolve

the value right away

• This can happen at link time. The object code might

just have a placeholder value

• The linker resolves this when making the final executable

• When compiling/assembling you do have to let the code

know the symbols are external and what they are like

(often in #include files)

8

• As long as you follow the ABI though you can link

against any object file, even one that was compiled long

ago, or one you don’t have the source for, or a system

library.

9

Inline Assembly

• Inline assembly

• Note, gcc/Linux does this a lot more annoyingly (include

example)
__asm int sum4(int a, int b, int c ,int d) {

push {r4 ,lr}

mov r4 ,r0

add r4 ,r4 ,r1

add r4 ,r4 ,r2

add r0 ,r4 ,r3

pop {r4 ,pc}

int sum4(int a, int b, int c, int d) {

int t;

10

__asm {

add t,a,b

add t,c

add t,d

}

return t;

}

ULong amd64g_dirtyhelper_RDPMC (ULong counter) {

UInt eax , edx;

__asm__ __volatile__("movq %[c],%%rcx; rdpmc"

: "=a" (eax), "=d" (edx) : [c] "r" (counter));

return (((ULong)edx) << 32) | ((ULong)eax);

}

\begin{lstlisting}

11

Calling Assembly from C (10.4)

/* main.c */

extern int sum4(int a, int b, int c, int d);

int main(int argc , char **argv) {

x=sum4 (1,2,3,4);

while (1);

}

This is where the ABI excels.

Linux directives are a bit different. .globl

12

/* sum4.s */

EXPORT sum4

sum4 PROC

push {r4,lr}

mov r4 ,r0

add r4 ,r4 ,r1

add r4 ,r4 ,r2

add r0 ,r4 ,r3

pop {r4 ,pc}

ENDP

Strong and weak symbols?

13

Calling C from Assembly (10.4)

/* sum.c */

/* note , not declared static */

int sum2(int x, int y) {

return x+y;

}

/* main.s */

IMPORT sum2

ENTRY

__main PROC

14

mov r0 ,#1

mov r1 ,#2

bl sum2

stop b stop

ENDP

15

