
ECE 271 – Microcomputer
Architecture and Applications

Lecture 16

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

26 March 2019

http://web.eece.maine.edu/~vweaver

Announcements

• Read Chapter 11

• Midterm graded

• Lab #7 is happening

1

Hand back Midterms

2

Lab #7 Notes

• Access the timer, in C

3

Interrupt Review

• Cortex-M has 255 interrupts. -1 to -15 built-in, 0-240

external

• When something triggers interrupt (traditionally pull a

line low) stops execution and jumps to interrupt handler

• With vector interrupt handler, a vector each with an

address for each handler, look up in table from interrupt

number and jump

• First thing you need to do is save registers so we can use

them. Cortex-M does this for you, saves R0,R1,R2,R3,

4

R12,PSR,LR,PC

(Note, saves on the ”MSP – Main Stack Pointer”. To

confuse things there’s also a special ”PSP – Process

stack pointer” but that’s possibly only used if you’re

writing an OS)

• Then your code runs in a handler, which is much like a

C function

• You may need to “ACK” the interrupt, let the hardware

know you are handling things so it can stop asserting

the IRQ line

• Do whatever you need to do

5

• Return. Can return just like a regular return

(some architectures require a special return-from-irq

instruction... not Cortex-M though)

Cortex-M does weird stuff with Link Register – special

value with FFFF in high bits that indicates we are

returning from an IRQ handler and that the return

value is on the stack (more info on this in the

textbook/manual)

• Ideally the main code running on the processor doesn’t

even notice an interrupt happened

6

Setting up/enabling Interrupts

• Note this and SysTick described in Cortex-M4 Devices

Generic User Guide DUI0553.pdf not in the STM32L4

manual

• Interrupt Set Enable Register – (ISER0–ISER7) note,

this is like the BSRR register, 1 means enable, 0 means

do nothing

• Interrupt Clear Enable Register (ICER0–ICER7)

• Setting/clearing. Bitmask, so 32-bits
word_offset=irq_num >>5; // why?

bit_offset=irq_num &0x1f; // why not % 32

NVIC ->ISER[word_offset]=(1<< bit_offset);

7

• Assembly – note byte vs word addressing
// irq to enable in r0

ldr r4 ,= NVIC_BASE

lsr r1 ,r0 ,#5 // get word_offset into r1

lsl r1 ,r1 ,#2 // change to byte offset , mulx4

add r1 ,r1 ,# NVIC_ISER0

and r2 ,r0 ,#0x1f // get bit offset in r2

mov r3 ,#1

lsl r3 ,r3 ,r2

str r3 ,[r4 ,r1]

8

Setting Priority

• SHP (system handler priority)

• Byte array in the SCB (System Control Block)
SCB ->SHP [(((uint8_t)irq)&0xf)-4]=(priority <<4)&0 xff);

• For the external ones, there’s the IP (interrupt priority

register) in the NVIC structure.
NVIC ->IP[irq]=(priority <<4)&0 xff;

9

Global Interrupt Enable/Disable

• CPS (change processor state) instruction – pseudo

instruction that sets the PRIMASK (priority mask)

register

• CPSID i – disable interrupts

• CPSID f – disable fault handlers

• CPSIE i

• CPSID f

• Can also set priority mask manually to disable interrupts

above a certain level. Need MSR instruction as it’s a

10

special register

• The way to do this is the CPSIE I assembly language

instruction.

• Can we do this in C? We’ll have to use inline assembly.

◦ On Keil, you can do this:
__asm("CPSIE i");

◦ On Linux it will look like:
asm volatile ("cpsie i");

11

NMI – Non-maskable Interrupts

• An interrupt that cannot be stopped

• What are the useful for?

• Watchdog timers?

• Hacking, performance counters?

12

