
ECE 271 – Microcomputer
Architecture and Applications

Lecture 26

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 May 2019

http://web.eece.maine.edu/~vweaver


Announcements

• Final! Tuesday, May 7th, 8am, this room (Barrows 119)

• Website is down, possibly permanently. So is github.

Working on a solution.

1



Hand Back and go Over Midterm #2

• Average was a 78

2



Final Review – Midterm #1 Topics

• Know basic C

◦ Setting/clearing bits

◦ Knowing what volatile is and why you use it

◦ Knowing that local variables go on the stack, difference

from global variables.

• Assembly language

◦ I will provide a table of THUMB2 instructions so no

need to memorize.

◦ Things like, what does this code do? Or, add

3



comments to this code, or, what is wrong with this

code.

◦ Know basic things, like what a loop looks like, and

how to load into registers.

◦ I *won’t* ask detailed flag question, but remember

how CMP works, and how to make ALU instructions

set the flags (ADD vs ADDS).

◦ Also be able to work through a simple loop that uses

CMP followed by BEQ or BNE or similar

• ABI, know why we have one.

◦ ARGS go in r0-r3

4



◦ return value in r0

◦ Some register are callee vs caller

◦ Return value in LR, what happens in leaf vs other

function

• Lab topics

◦ GPIO, LCD, Scanning, Stepper

◦ Most important is GPIO as we used those the most,

no low-level details about the others

◦ No need to memorize all of the MODER register fields,

etc.

◦ Questions may be similar to those on pre/post-lab

5



Final Review – Midterm #2 Topics

• Interrupts

◦ Vectored interrupts – there is a table low in memory

(the interrupt vector) which has a lookup table of

pointers. When an interrupt happens, the CPU looks

up the address from the appropriate pointer and jumps

to it

◦ Interrupt handlers on Cortex-M are just normal

functions (the CPU does “stacking”, saving some

registers on the stack automatically for you. A magic

6



value is put in the Link register so the CPU knows you

are returning from a handler).

◦ Once an interrupt happens, you enter the handler.

Often you will need to ACK (acknowledge) the

interrupt so the CPU knows you are done handling

it. How this happens can vary with what hardware you

use (it’s often clearing a bit, but somehow it happens

automatically).

◦ Enabling an interrupt is multiple steps. You have

to enable it in the device (For example, in the timer

registers). Then you have to tell the NVIC (interrupt

7



controller) to enable it. Then you have to enable it on

the CPU globally with asm("CPIE i"). Finally you

have to enable whatever hardware will be triggering

the interrupt.

◦ Some devices (such as TIM4) can have multiple causes

that trigger the same interrupt (i.e., overflow and

capture). You can figure out which one was the

cause by checking certain bits to see the source of the

interrupt.

• Timers

◦ Lots of registers to set.

8



◦ Set what clock source to use system wide.

◦ You can then use the prescalar to divide the frequency

down.

◦ You can set to count up (from 0 to the ARR register

value), count down (from ARR to 0) or center count

(count up and down).

• PWM

◦ pulse width modulation: you set a CCR value that

when the counter gets bigger it triggers an output to

go high. This way you can generate a regular pulse

with an overall frequency based on ARR and a duty

9



cycle based on CCR.

• Input Capture

◦ You can use the Timer to measure the length of signals.

◦ When the incoming signal has a transition (high to low

or low to high) the timer will grab the current timer

count and store it in a register. (optionally also an

interrupt can be triggered).

◦ By saving the previous value, and subtracting from the

current value, you can calculate how many clock ticks

have happened

◦ If your signal is wider than the maximum value of the

10



counter, an overflow can happen. In order to measure

signals that long you can catch the overflows and count

them, and then add that time in to the measured time.

• Fixed/Floating Point: there will be a take-home question

where you will convert a decimal value to IEEE-574

floating point and back.

11



More Recent Topics

• ADC – analog to digital conversion

• Measure analog signal, convert to digital values

• Can read analog sensors

• DAC – digital to analog conversion

◦ Convert digital values to analog signal

◦ Can be used to generate wave forms, music

• Floating Point on Cortex-M4

◦ Be aware of fixed point vs floating point tradeoffs

◦ Do a simple floating point to decimal conversion (I’d

12



give you the formulas)

◦ Know the FPU is a separate unit. Cortex-M4 only has

single precision (32-bit) support. Separate register set,

completely separate instructions starting with V

• DMA

◦ Special unit that can do peripheral to memory copies

without CPU interaction

◦ Can run in background, send interrupt when done (or

nearing done)

◦ Frees up the CPU for processing

13



Traveling the Oregon Trail

14


