ECE271: Microcomputer Architecture and Applications — University of Maine

Prelab for Lab #9: Input Capture and Distance Sensor Week of 8 April 2019

Part A – Textbook Readings / Videos

1. Read Textbook Chapter 15.4 to review input capture.

Part B – Prelab assignment

In this lab we will set up the TIM4 timer for input capture on pin PB6 and the TIM1 timer to generate a trigger pulse on pin PE11.

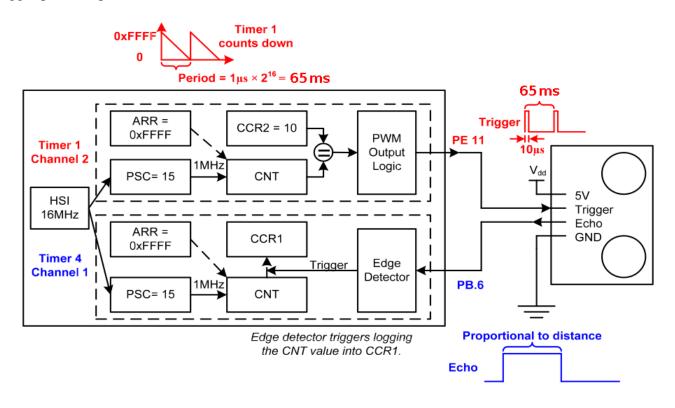


Figure 1: Timer setup for lab.

1. Doing input capture with timer TIM4

For this lab we will be using the 16MHz HSI timer.

The formula is
$$f_{timer_clock} = \frac{f_{HSI}}{1 + PSC}$$

- 1. What value should you use for the PSC to get a counting increment of $1\mu s$?
- 2. For the prescaler value in PSC, with the 16-bit TIM4 timer, how long (in terms of seconds) does it take for a counter overflow or underflow event to occur?

2. Settings needed to have pin PE11 connected to timer TIM1 Channel 2

You will need to set the following fields. Write the values to mask/set. If no mask is needed you can let that blank. You can use pre-defined names for the bits rather than raw hex values.

• Set GPIOE->MODER for pin 11 to be "alternate" mode.
MASK MODER= VALUE MODER=
VALUE MODER—
• Set GPIOE->AFR[0] and GPIOE->AFR[1] for alternate function of Pin 11 to be TIM1_CH2. You
can look in Appendix I of the book to see which one this is. This should be in one of the document pdfs too but I wasn't able to find which one.
MASK AFR[0]=
VALUE AFR[0]=
MASK AFR[1]=
VALUE AFR[1]=
• Set GPIOE->OTYPER for Pin 11 to be push-pull
MASK OTYPER=
VALUE OTYPER=
• Set GPIOE->PUPDR for Pin 11 for no pull-up/pull-down
MASK PUPDR=
VALUE PUPDR=
2 Cattings and data surrous as 10 modes on DE11
3. Settings needed to generate a $10\mu s$ pulse on PE11
You will need to set the following fields. Write the values to mask/set. If no mask is needed you can let that blank. You can use pre-defined names for the bits rather than raw hex values.
• Set TIM1->CR1 for the counting direction to be up.
MASK CR1=
VALUE CR1=
• We will use a 16MHz HSI clock for this lab. Set the prescalar TIM1->PSC to count at 1MHz.
MASK PSC=
VALUE PSC=
• Set the TIM1->ARR register to give the maximum possible period
MASK ARR=
VALUE ARR=

• Clear the OC2M field in the TIM1->CCMR1 register and select PWM Mode 1 (OC2M = 110): MASK CCMR1=
• Enable the Output 2 preload enable in TIM1->CCMR1 (OC2PE): MASK CCMR1= VALUE CCMR1=
 Select the output polarity by clearing the CC2P field in the TIM1->CCER register: MASK CCER= VALUE CCER=
• Enable output of Channel 2 (CH2) by setting the CC2E bit in TIM1->CCER: MASK CCER= VALUE CCER=
• Set the main output enable (MOE) in TIM1->BDTR: MASK BDTR= VALUE BDTR=
• Set the output compare register for channel 2 TIM1->CCR2 to be on for 10μs each period: MASK CCR2=