ECE 271 — Microcomputer
Architecture and Applications
Lecture 5

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

1 February 2022


http://web.eece.maine.edu/~vweaver

Announcements

e Read Chapter #3 and #4 of the book.

e We have a grad TA, Colin Leary, who will be having
office hours on Wednesday at 2pm.
If earlier/later/different day might work better for
everyone, let me know.

e Reminder: no food or drink in the labs



More Lab Notes

e Provided character translation code isn't the best

e Difference between uint8_t vs char?

e Something else the code does, copying data and bss
segments

e Strings in C, pointers

e Commenting styles, Doxygen

e Using the predefined constants in stm321476xx.h

e How do you make a delay? For loop? Don't forget the
volatile.

-y 2



Assembly Language: What’s it good for?

e Understanding your computer at a low-level

e Shown when using a debugger

e It's the eventual target of compilers

e Operating system writers (some things not expressible in
C)

e Embedded systems (code density)

e Research. Computer Architecture. Emulators/Simulators.

e Video games (or other perf critical routines, glibc, kernel,
etc.)

-y 3



Thumb-2 Encoding Example

r7=r3+(r7/256)
add.w 7,r3,r7, asr #8
eb03 2727

1110 1011 0000 (0011 |

Data Processing Add ~ Rn(13)
with Shift Set Flags

0010 (0111 (0010 [O0111 |
\Hd(r?)/ /‘ Bm (r7)

Imm3/Imm2 (8)

Shift Type (ASR)
SBZ (should be zero)



Registers

e How are registers designed?
SRAM (static RAM: flip-flops)
Aside: main memory on a desktop/laptop is DRAM

(c

W

ynamic RAM) with one transistor and a capacitor,
nich drains quickly and has to be constantly refreshed.
nree ports: two output and one input

ne rules for what goes in what register are part of the

ABI (Application Binary Interface)



ARM32 registers

Has 16 GP registers

rO - r12 are general purpose
rl1l is sometimes the frame pointer (fp) [iOS uses r7]
r12 is inter-procedure scratch reg (ip)

r13 is stack pointer (sp)

r14 is link register (Ir)

r15 is program counter (pc)
reading r15 usually gives PC+8




Application Binary Interface (ABI)

e There are no hardware rules about what to put in a
register

e There are software guidelines though

e This helps in large programs where it can be trouble
remembering what register does which

e It can help when working in a large project and you want
your code to work with others

e It helps when you want to call standard libraries or
functions from your code (e.g. printf ()

-y d



ARM ABI

e r0 - r3 are arguments to functions (al-a4)
these are caller saved (the caller must save the values,
the function is allowed to change them)

e r0 is return value from function

e r4 - r10 are general purpose (v1-v8)
these are callee saved, the function must save them if it
wants to change them and restore them before returning

e There are additional corner cases (values more than
32-bits, floating point values, etc)

-y 8



The Stack

e A stack is a LIFO (last-in first-out) data structure
common on MOoOSt processors

e A stack pointer (r13 on ARM) points to a region of
memory

e Often stacks grow down (meaning, the stack pointer
starts near the top of memory and when items are
pushed the SP decreases toward 0)

e You can PUSH a 32-bit register value onto the stack
This will place the item in memory and decrement the

-y 9



stack pointer by 4 bytes

e You can POP a 32-bit value off the stack into a register
This will take the item from memory and increment the
stack pointer by 4 bytes

e Values are stored on the stack with no additional
identifying info. If you are pushing/poping values it's up
to you to make sure you do things in the right order to
get the proper values back.

/Y 10



Use of The Stack

e If you run out of registers and need more for your
computation, you can temporarily save values on the
stack

e At entry to a function, any callee saved registers are
usually stored on the stack, and they are restored at the
end before returning.

e In non-leaf functions, often the Link Register return
value is saved on the stack as well

e Any arguments beyond al-a4 are passed on the stack

-y 1



e In C, room for local variables is allocated on the stack.
Often the Frame Pointer helps in accessing these. When
the function ends, the stack is restored and the variables
go away

/Y 12



ARM Status Register

e 1 status register (more in system mode).
NZCVQ (Negative, Zero, Carry, oVerflow, Saturate)

13



Let’s start with ALU instructions

e a=b-c;
e How is ALU designed? Adder/subtractor/logic?

14



Add instruction

e add r1,r2,r3 —rl=r2+4r3
e Gets the values, adds two, stores in third

15



What does an assembly line look like

e annoyingly this can vary by platform, and even by
assembler program on the same platform. (could be
worse, intel vs at&t on x86)

e GNU asm style:

label: opcode dest, srcl, src2 ; comment

/* comment %/

o Kell style:

-y 16



label
opcode dest, srcl, src2 ; comment

e Label marks a point in the program. If you reference
it the assembler will turn it to an address. You can
do things like jump/branch/goto it. You can load
from /store to it.

e The opcode or mnemonic says what you want to do.
add/sub/eor, etc

-y 17



Assembly Directives: Keil / GNU

e Put this in your code to give the assembler directions
e Things like where to reserve memory, where functions
start, etc.

e Slightly different from Keil to GNU (GNU starts with a
)

/Y 18



Add instruction

e add r1,r2,r3 —rl=r2+4r3

e add ri1,r2,#immediate rl=r2+4constant

here are limits to constant size. Why?

he thumb2 constants are exciting, will get to later

19



Settings Flags

e adds r1,r2,r3 — set condition flag
flags NZCV
o N = negative (how can you tell if negative?)
o Z = zero (how can you tell if zero?)
o C = carry (how can you tell if carry? Why is it useful?)
o V = overflow (will get to this later), signed overflow
o Q = saturate

/Y 20



