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Announcements

• Read Chapter #3 and #4 of the book.

• We have a grad TA, Colin Leary, who will be having

office hours on Wednesday at 2pm.

If earlier/later/different day might work better for

everyone, let me know.

• Reminder: no food or drink in the labs
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More Lab Notes

• Provided character translation code isn’t the best

• Difference between uint8 t vs char?

• Something else the code does, copying data and bss

segments

• Strings in C, pointers

• Commenting styles, Doxygen

• Using the predefined constants in stm32l476xx.h

• How do you make a delay? For loop? Don’t forget the

volatile.
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Assembly Language: What’s it good for?

• Understanding your computer at a low-level

• Shown when using a debugger

• It’s the eventual target of compilers

• Operating system writers (some things not expressible in

C)

• Embedded systems (code density)

• Research. Computer Architecture. Emulators/Simulators.

• Video games (or other perf critical routines, glibc, kernel,

etc.)
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Thumb-2 Encoding Example
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Registers

• How are registers designed?

SRAM (static RAM: flip-flops)

Aside: main memory on a desktop/laptop is DRAM

(dynamic RAM) with one transistor and a capacitor,

which drains quickly and has to be constantly refreshed.

• Three ports: two output and one input

• The rules for what goes in what register are part of the

ABI (Application Binary Interface)
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ARM32 registers

• Has 16 GP registers

• r0 - r12 are general purpose

• r11 is sometimes the frame pointer (fp) [iOS uses r7]

• r12 is inter-procedure scratch reg (ip)

• r13 is stack pointer (sp)

• r14 is link register (lr)

• r15 is program counter (pc)

reading r15 usually gives PC+8
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Application Binary Interface (ABI)

• There are no hardware rules about what to put in a

register

• There are software guidelines though

• This helps in large programs where it can be trouble

remembering what register does which

• It can help when working in a large project and you want

your code to work with others

• It helps when you want to call standard libraries or

functions from your code (e.g. printf()
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ARM ABI

• r0 - r3 are arguments to functions (a1-a4)

these are caller saved (the caller must save the values,

the function is allowed to change them)

• r0 is return value from function

• r4 - r10 are general purpose (v1-v8)

these are callee saved, the function must save them if it

wants to change them and restore them before returning

• There are additional corner cases (values more than

32-bits, floating point values, etc)
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The Stack

• A stack is a LIFO (last-in first-out) data structure

common on most processors

• A stack pointer (r13 on ARM) points to a region of

memory

• Often stacks grow down (meaning, the stack pointer

starts near the top of memory and when items are

pushed the SP decreases toward 0)

• You can PUSH a 32-bit register value onto the stack

This will place the item in memory and decrement the

9



stack pointer by 4 bytes

• You can POP a 32-bit value off the stack into a register

This will take the item from memory and increment the

stack pointer by 4 bytes

• Values are stored on the stack with no additional

identifying info. If you are pushing/poping values it’s up

to you to make sure you do things in the right order to

get the proper values back.
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Use of The Stack

• If you run out of registers and need more for your

computation, you can temporarily save values on the

stack

• At entry to a function, any callee saved registers are

usually stored on the stack, and they are restored at the

end before returning.

• In non-leaf functions, often the Link Register return

value is saved on the stack as well

• Any arguments beyond a1-a4 are passed on the stack
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• In C, room for local variables is allocated on the stack.

Often the Frame Pointer helps in accessing these. When

the function ends, the stack is restored and the variables

go away
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ARM Status Register

• 1 status register (more in system mode).

NZCVQ (Negative, Zero, Carry, oVerflow, Saturate)
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Let’s start with ALU instructions

• a=b+c;

• How is ALU designed? Adder/subtractor/logic?
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Add instruction

• add r1,r2,r3 – r1=r2+r3

• Gets the values, adds two, stores in third
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What does an assembly line look like

• annoyingly this can vary by platform, and even by

assembler program on the same platform. (could be

worse, intel vs at&t on x86)

• GNU asm style:

label: opcode dest, src1, src2 ; comment

/* comment */

• Keil style:

16



label

opcode dest, src1, src2 ; comment

• Label marks a point in the program. If you reference

it the assembler will turn it to an address. You can

do things like jump/branch/goto it. You can load

from/store to it.

• The opcode or mnemonic says what you want to do.

add/sub/eor, etc
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Assembly Directives: Keil / GNU

• Put this in your code to give the assembler directions

• Things like where to reserve memory, where functions

start, etc.

• Slightly different from Keil to GNU (GNU starts with a

. )
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Add instruction

• add r1,r2,r3 – r1=r2+r3

• add r1,r2,#immediate r1=r2+constant

There are limits to constant size. Why?

The thumb2 constants are exciting, will get to later
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Settings Flags

• adds r1,r2,r3 – set condition flag

flags NZCV

◦ N = negative (how can you tell if negative?)

◦ Z = zero (how can you tell if zero?)

◦ C = carry (how can you tell if carry? Why is it useful?)

◦ V = overflow (will get to this later), signed overflow

◦ Q = saturate
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