
ECE 271 – Microcomputer
Architecture and Applications

Lecture 6

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

3 February 2022

http://web.eece.maine.edu/~vweaver

Announcements

• Read Chapter 14.9 for the Lab

• Read Chapters 3+4 to learn about ARM assembly

• We have gitlab just about ready to do, we’ll send further

directions when we have them

1

Lab#3, Keypad scanning

• Did you already do this in ECE177?

• Pre-lab will be posted. Very straightforward.

Do not be lulled into complacency! Lab itself a bit

tricky.

• Will hate to put some wires and resistors on a breadboard

Hopefully everyone knows how breadboards work?

• Be sure to bring in a breadboard from previous classes

and jumper wire.

We will provide one, but it can be handy to have second

2

• Keypads – I think all of the ones this year have 4

columns, but if you get one with three it works just the

same, just can’t type ABCD

3

Keypad Setup

4

Keypad Scanning – Seeing if Any Pressed

• With 16 buttons, how many GPIOs do you need? By

scanning only need 4+4=8

• Column pulled high to 3.3V

• First set all PE gpio (row) pins low to (0b0000)

• Next read out PA gpio (column) pins. If all still high

(0b1111) then it means nothing was pressed (as we are

pulling the lines high with the resistors, so they will only

be pulled low if a button is pressed)

5

Keypad Scanning – Finding which one

• If key press detected, need to try each row at a time and

see which one it was.

• You can try each row by writing out the pattern 0b1110,

0b1101, 0b1011, 0b0111

• Once you know the row and the column, you can

translate this to the button pressed. How? Big if/then

statement? switch/case? Lookup table?

6

Keypad Scanning – Pressing Multiple Keys

• What happens if two keys pressed at once?

• Try not to do this, as you could short 3V to GND.

• Textbook goes on at length about this and describes

ways to handle this.

7

Keypad Scanning – Debouncing

• Debouncing – if your keypresses are noisy they will

register as extra keypresses.

• Can you do this in hardware, maybe add capacitor?

Maybe, but adds latency, also you need extra parts.

• One way is to read multiple times and only register

keypress if multiple reads are all the same (say three in

a row)

• Can also do thinks by having a delay to see if signal

stabalizes, but this can have latency

8

• Also, what happens if someone holds a key down? Should

it auto-repeat? Should you only register as one keypress

(maybe on release of key?)

9

LCD Output

• Use your working code from Lab#2, specifically the

LCD Display String() code

• First step is to wire up things and just read out.

I made a first step where I printed the binary values to

be sure switch hooked up right.

• How do you do that? Lots of ways
char string [7]; // why 7?

string [6]=0; // why?

string [0]=’X’;

string [1]=(((GPIOA ->IDR)&(1<<5))>>5)+’0’;

string [2]=(((GPIOA ->IDR)&(1<<5))>>5)?’1’:’0’;

• Then once you can see the keypad is working, go in and

10

write the code that scans rows/columns and prints the

proper character to the LCD.

11

LCD Output

• Want to display keypresses as they occur, then scroll

them to the left.

• If you have a character array:
char buffer [6]="␣␣1234";

• One way is to just copy with a loop:
for(i=0;i<5;i++) buffer[i]= buffer[i+1];

buffer [5]=’5’;

• You might think of C library memcpy() or memmove()

but on a small embedded board we might have those

available.

12

Back to Assembly Language

13

Math operations

• Note: can use ’S’ and immediate with all of these too

• add r0,r1,r2 – add r0=r1+r2

• adc r0,r1,r2 – add with carry: r0=r1+r2+C

• sub r0,r1,r2 – subtract: r0=r1-r2

• sbc r0,r1,r2 – subtract with carry (borrow): r0=r1-r2-

(NOT carry)

• rsb r0,r1,r2 – reverse subtract: r0=r2-r1

• rsc r0,r1,r2 – reverse subtract: r0=r2-r1

14

Add with Carry (8-bit example)

Say we want to add 16-bit value 0x0AFF + 0x8101 but

we only have 8-bit wide add instruction. You can chain

together 8-bit adds using the carry flag.

Use adds to add the low bytes and update flags

1 1 1 1 1 1 1 1

+ 0 0 0 0 0 0 0 1

1 ← 0 0 0 0 0 0 0 0

(C)

15

Add the upper bytes using adc which adds in the existing

carry flag (from the previous adds)
0 0 0 0 1 0 1 0

1 0 0 0 0 0 0 1

+ 1 ← (C)

1 0 0 0 1 1 0 0

16

Subtract with Borrow (8-bit example)

Say we want to subtract 16-bit 0x8000 - 0x0001 but we

only have 8-bit wide ALU. You can chain together 8-bit

subtracts using the carry (borrow) flag.

Use subs to subtract the low bytes and update flags. Carry

is 1 if no borrow, 0 if there is a borrow.

17

0 0 0 0 0 0 0 0

- 0 0 0 0 0 0 0 1

0 (borrow) ← 1 1 1 1 1 1 1 1

(C)

Subtract the upper bytes using sbc which uses the existing

carry flag (from the previous subs). Note the *inverse* of

the carry is subtracted off.

18

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

- 1 ← inverse of (C)

0 1 1 1 1 1 1 1

Why use inverted borrow? It makes the ALU easier if

using twos complement. To SUB you just invert the

second term, add them, then add 1. To SBC you add in

the carry instead of the 1.

19

Complicated Operands

• add r0,r1,#5 – add constant, r=r1+5

• adds r0,r1,r2 – update flags

• add.w r0,r1,r2 – wide (use 32-bit rather than 16 bit

encoding)

• addeq r0,r1,r2 – conditional execution, more on that

later

• addeq r0,r1,r2,asr #8 – barrel shift more on that later

• addseq.w r0,r1,r2,asr #8 – you can combine them all

20

Moves

• mov r0,r1 – moves (copies) the value in r1 into r0

• mvn r0,r1 – moves (copies) the 1’s complement inverse

of r1 into r0

• ADR r0,symbol – move address of symbol into r0

• movw r0,#value – move 16-bit value into bottom, clear

top

• movt r0,#value – move 16-bit value into top, leave

21

bottom alone

22

Bitwise

• and r0,r1,r2 – bitwise and: r0=r1 AND r2

• orr r0,r1,r2 – bitwise or: r0=r1 OR r2

• eor r0,r1,r2 – exclusive or: r0=r1 XOR r2

• orn r0,r1,r2 – or with inverse: r0=r1 OR (1’s complement

r2)

• bic r0,r1,r2 – bit clear (and not): r0=r1 and not r2

23

Test/Compare

• tst r1,r2 – test bit (does and, but only updates flags)

• teq r1,r2 – test equal (does eor, but only updates flags)

• cmp r1,r2 – compare (does subtract, only updates flags)

• cmn r1,r2 – compare negative (does add, only updates

flags)

24

Shifting

• Shift bits one way or another

• Note: carry and N/Z only updated if the ’S’ variant used

• The bit that gets shifted out is put into the carry.

• Why into carry? What if want to do 64-bit shift?

Also can be clever and do things that are hard in C, like

shift right and test C to see if low bit was 1.

• LSL r1,r2,r3 – logical shift left r2 by amount in r3 (or

immediate) and store in r1.

• What happens if shift value larger than 32? It saturates

25

(goes to 0)

note that x86 is different, does mod (so shift by 32 same

as shift by 0). Undefined behavior in C, be careful!

26

Shift instructions

• LSL r1,r2,r3 – logical shift left (shift in zeros)

a shift left by one is the same as multiply by 2

high bit shifted off goes into carry flag

• LSR r1,r2,r3 – logical shift right

a shift right by one is the same as divide by 2

0 shifted in on left, low bit shifted out into carry

• ASR r1,r1,r3 – arithmetic shift right

sign (high bit) shifted in (preserving sign)

low bit goes into carry

27

• Is there an ASL (arithmetic shift left?) Not needed

28

Rotate Instructions

• ROR r1,r2 – rotate right

lo bit into carry and into hi

• RRX r1,r2 – rotate right, extended, so through carry lo

to carry, carry to hi

• Is there an ROL? Turns out it ROL by 5 is same as ROR

by (32-5)

29

Barrel Shifts

• For ALU instructions, and some others.

• The third argument can optionally be shifted by a

constant

◦ add r1,r2,r3 LSR #2

r1=r2+(r3¡¡2)

◦ LSL, LSR, ASR, ROR, RRX
◦ on arm32 could have a 4th register instead of a

constant as shift amount

• Why would you want to do this?

30

Accessing 32-bit values in an array

Hack, really fast multiplies

Example: add r0,r1,r1 LSL #2 is same as r0=r1*5

31

