
ECE 271 – Microcomputer
Architecture and Applications

Lecture 7

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

8 February 2022

http://web.eece.maine.edu/~vweaver

Announcements

• Read Chapter 5

1

Subtract with Borrow (8-bit example)

Say we want to subtract 16-bit 0x8000 - 0x0001 but we

only have 8-bit wide ALU. You can chain together 8-bit

subtracts using the carry (borrow) flag.

Use subs to subtract the low bytes and update flags. Carry

is 1 if no borrow, 0 if there is a borrow.

2

0 0 0 0 0 0 0 0

- 0 0 0 0 0 0 0 1

0 (borrow) ← 1 1 1 1 1 1 1 1

(C)

Subtract the upper bytes using sbc which uses the existing

carry flag (from the previous subs). Note the *inverse* of

the carry is subtracted off.

3

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

- 1 ← inverse of (C)

0 1 1 1 1 1 1 1

Why use inverted borrow? It makes the ALU easier if

using twos complement. To SUB you just invert the

second term, add them, then add 1. To SBC you add in

the carry instead of the 1.

4

Barrel Shifts

• For ALU instructions, and some others.

• The third argument can optionally be shifted by a

constant
◦ add r1 ,r2 ,r3 LSR #2

r1=r2+(r3 <<2)

◦ LSL, LSR, ASR, ROR, RRX
◦ on arm32 could have a 4th register instead of a

constant as shift amount

5

Multiply

• How big is your result? 32bit * 32bit has potentially

64bit result

What happens to the high bits?

• MUL RD,RN,RM = rd=rn*rm (signed)

• UMUL RD,rn,rm = unsigned

• MLA rd,rn,rm,ra = multiply/add rd=rn*rm+ra

• MLS rd,rn,rm,ra = multiply/sub rd=rn*rm-ra

6

• UMULL rdlo,rdhi,rm,rn

• MULL rdlo,rdhi,rm,rn

7

Faster Multiply

• Other ways to multiply.

• Can multiply by two by adding

add r1,r2,r2; r1=r2*2

• Can multiply by powers of two by just doing shift left

asl r1,r2,#2; r1=r2*4

• With ARM barrel-shifters can do shit/add in one

instruction. add r1,r2,r2,asl #2; r1=r2*5

8

Division

• SDIV RD,rn,rm = Signed divide rd=rn/rm

• UDIV RD,rn,rm = Unsigned divide rd=rn/rm

• Even slower than mul. Takes a lot of space, not used

often, so some chips leave it off. For example, no divide

on early Raspberry Pi

• For powers of two, can right-shift

9

Remainders

• Division gives you quotient: what if you want remainder?

◦ If power of two, can use and with divisor - 1:

5/4 : R = 5&(4-1)

This is just masking off the bottom bits that get shifted

off.

◦ If have multiply instruction, R = original - (Q *

divisor):

5/4 : Q = 5 - (1*4)

10

How would you divide if not available in
Hardware?

• For constant devisiors, can multiply by reciprocal. x/10

= x* (1/10). Have to set up the value and rounding

right, but is often faster than dividing.

• Alternately, do shift and subtract, like long division.

11

Loading a Constant

• mov r0,#8 – constant, up to 8 bits

• movw r0,#imm16 – move 16 bits to bottom of register

(and clear top)

• movt r0,#imm16 – move 16 bits to top of register (leave

bottom)

• ldr r0,=imm32 – old fashioned way, using global table

Usually a PC relative load

12

PC Relative Load/Stores

• Remember that r15 is PC

• This is how the syntax

ldr =0 xdeadbeef

turns into

1005c: 480b ldr r0 , [pc , #44] ; (1008c

......

1008c: 0xdeadbeef

13

Thumb-2 12-bit immediates

ADD and SUB can have a real 12-bit immediate (0..4095)

Or you can have flexible immediate (ADD and SUB can

do this too):

• any constant that can be produced by shifting an 8-bit

value left by any number of bits within a 32-bit word

• any constant of the form 0x00XY00XY

• any constant of the form 0xXY00XY00

• any constant of the form 0xXYXYXYXY.

top 4 bits 0000 -- 00000000 00000000 00000000 abcdefgh

14

0001 -- 00000000 abcdefgh 00000000 abcdefgh

0010 -- abcdefgh 00000000 abcdefgh 00000000

0011 -- abcdefgh abcdefgh abcdefgh abcdefgh

rotate bottom 7 bits|0x80 right by top 5 bits

01000 -- 1bcdefgh 00000000 00000000 00000000

...

11111 -- 00000000 00000000 00000001 bcdefgh0

15

Load/Stores to Memory

• ldr r0, [r1] – load 32-bit value from pointer r1 into r0

• Can you do something like

ldr r0, variable

sadly no

• Need to first

ldr r1, =variable

16

Using registers as pointers

• The CPU makes no distinction between pointers and

integer values

• You can use any register as either a pointer or integer

• When programming in assembly language it’s up to you

to keep track of what type of value is in each register

17

Load Different Sizes

• What if you don’t want to load 32-bits?

• ldrb – load byte into register

• ldrh – load half-word (16-bits)

• ldrsb – load signed byte (sign-extend to fill 32-bits)

• ldrsh – load signed half-word (sign-extend)

18

Load with Offset (register)

• ldr r0, [r1,r2] – pre-index, load 32-bit value from

pointer (r1+r2) into r0

• Index a byte array
char a[10];

int x=5;

r3=a[x];

ldr r1 ,=a

mov r2 ,#5

ldrb r3 ,[r1 ,r2]

19

Load with Offset (constant)

• ldr r0, [r1,#4] – pre-index

Load 32-bit value from pointer (r1+4) into r0

• useful for structs, things like

r2=GPIOA ->ODR

ldr r1 ,= GPIOA_BASE

ldr r2 ,[r1 ,# GPIO_ODR]

• 20

Load with Offset (shift)

• ldr r0, [r1,r2,lsl #2] – pre-index

Load 32-bit value from pointer (r1+(r2*4)) into r0

• Index an integer array
int a[10];

int x=5;

r3=a[x];

ldr r1 ,=a

mov r2 ,#5

ldr r3 ,[r1 ,r2 ,lsl \#2]

21

Load with Offset (pre-index update)

• ldr r0, [r1,#4]! – pre index with update.

Load 32-bit value from pointer (r1+4) put in r0. Then

add 4 to r1 and update r1.

22

Load with Offset (post-index update)

• ldr r0, [r1],#4 – post-index.

Load 32-bit value from pointer r1 into r0. Then add 4

to r1 and store in r1.

23

Stores

• str r0,[r1] – store 32-bit value in r0 to memory pointed

to by r1

• strb

• strh

• Any need for sign extend?

• Can do same addressing modes as loads, i.e. post-index,

etc

24

Load/Store Multiple

• Powerful

• STMIA rn!, register list

• for example
stmia r13 , {r0,r1,r2,r3}

• if ! then writeback, meaning the address of the final

thing is put into the register (like a stack)

• What happens if LR is in STM and then PC is in LDM?

25

• LDM the opposite

• IA, IB (increment before / increment after)

• DA, DB (decrement before / decrement after)

• can use PUSH/POP to do the same but assume r13

• PUSH/POP

• returning from a function trick?
push {r0 ,r1 ,r2 ,lr}

...

pop {r0 ,r1 ,r2 ,pc}

26

Thumb-2 12-bit immediates

ADD and SUB can have a real 12-bit immediate (0..4095)

Or you can have flexible immediate (ADD and SUB can

do this too):

• any constant that can be produced by shifting an 8-bit

value left by any number of bits within a 32-bit word

• any constant of the form 0x00XY00XY

• any constant of the form 0xXY00XY00

• any constant of the form 0xXYXYXYXY.

top 4 bits 0000 -- 00000000 00000000 00000000 abcdefgh

27

0001 -- 00000000 abcdefgh 00000000 abcdefgh

0010 -- abcdefgh 00000000 abcdefgh 00000000

0011 -- abcdefgh abcdefgh abcdefgh abcdefgh

rotate bottom 7 bits|0x80 right by top 5 bits

01000 -- 1bcdefgh 00000000 00000000 00000000

...

11111 -- 00000000 00000000 00000001 bcdefgh0

28

