
ECE 271 – Microcomputer
Architecture and Applications

Lecture 8

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

10 February 2022

http://web.eece.maine.edu/~vweaver

Announcements

• Read Chapters 6 and 7

• Gitlab directions/video have been posted

1

General Lab Update

• I hear that Lab #3 is taking longer than expected

• I will discuss with the TA and see if we can come up

with some sort of solution

2

Loading a Constant

• mov r0,#8 – constant, up to 8 bits

• movw r0,#imm16 – move 16 bits to bottom of register

(and clear top)

• movt r0,#imm16 – move 16 bits to top of register (leave

bottom)

• ldr r0,=imm32 – old fashioned way, using global table

Usually a PC relative load

3

• adr r0,varname – load address of a variable/label, may

only work if in same segment. pseudo instruction, PC

relative add

4

Thumb-2 12-bit immediates

ADD and SUB can have a real 12-bit immediate (0..4095)

Or you can have flexible immediate (ADD and SUB can

do this too):

• any constant that can be produced by shifting an 8-bit

value left by any number of bits within a 32-bit word

• any constant of the form 0x00XY00XY

• any constant of the form 0xXY00XY00

• any constant of the form 0xXYXYXYXY.

top 4 bits 00.00 -- 00000000 00000000 00000000 abcdefgh

5

00.01 -- 00000000 abcdefgh 00000000 abcdefgh

00.10 -- abcdefgh 00000000 abcdefgh 00000000

00.11 -- abcdefgh abcdefgh abcdefgh abcdefgh

rotate bottom 7 bits|0x80 right by top 5 bits

01000 -- 1bcdefgh 00000000 00000000 00000000

...

11111 -- 00000000 00000000 00000001 bcdefgh0

6

Load/Store Multiple

• Powerful

• STMIA rn!, register list

• for example
stmia r13 , {r0,r1,r2,r3}

• if ! then writeback, meaning the address of the final

thing is put into the register (like a stack)

• What happens if LR is in STM and then PC is in LDM?

7

• LDM the opposite

• IA, IB (increment before / increment after)

• DA, DB (decrement before / decrement after)

• can use PUSH/POP to do the same but assume r13

• PUSH/POP

• returning from a function trick?
push {r0 ,r1 ,r2 ,lr}

...

pop {r0 ,r1 ,r2 ,pc}

8

Control Flow

9

Comparison

• don’t need S flag (always update flags)

• CMP r0, r1 – compare two values, update flags

same as subtract instruction, but result thrown away

• CMN r0, r1 – compare negative (same as add)

• TST r0, r1 – test if bits set

same as AND, update flags

• TEQ r0, r1 – test if equal

same as xor, update flags

• What use is TEQ vs CMP? Doesn’t set C or V flags?

10

Branches/Jumps

• B – (BAL) branch always

• BEQ/BNE – branch equal/not-equal – (Z set/clear)

• BGE/BLT – signed greater or equal – N set and V set or

N clear and V clear

• BGT/BLE – Z clear and either N set and V set, or N clear

and V set

• BCS/BCC (BHS/BLO) – higher or same / lower

(unsigned) – (C set/clear)

11

• BMI/BPL – minus/plus (N set/clear)

• BVS/BVC – overflow (V set/clear)

• BHI/BLS (c set and z clear) – higher or less/same –(c

clear or z)

12

Example Code Translation – If/Then/Elese
if (x==0) {

y=1;

}

else {

y=5;

}

ldr r0 ,=x ; load address of X into r0

ldr r0 ,[r0] ; load value in X into r0

cmp r0 ,#0 ; compare with 0

bne ELSE ; if not equal , then branch ahead to ELSE

mov r1 ,#1 ; load 1 for placing into Y

ldr r3 ,=y ; get address of y in r3

str r1 ,[r3] ; store value to Y

b DONE ; skip ahead to DONE (to avoid else code)

ELSE

mov r1 ,#5 ; load 5 into Y

ldr r3 ,=y ; turns to pc -relative ldr

str r1 ,[r3] ; store out to Y

DONE

x

13

.word 0

y

.word 0

• The label names are arbitrary, you can pick ones that

make sense for you. They don’t have any special meaning

(the assembler will just convert them to numbers)

• When you branch to a label, the assembler turns this

into a jump offset.

So it will really turn into something like ”bne pc+X”

where X is a positive or negative offset that will be added

to the program counter, which will redirect execution to

the new instruction.

14

• If a branch is not taken, it just “falls through” to the

next instruction in order.

• Could we optimize this code? Hoist code before? Move

store after? Use ldrs instead of compare? Conditional

execution?

15

Example Code Translation – For Loop
for(i=0;i <100;i++) {

}

mov r0 ,#0 ; init loop index

LOOP

cmp r0 ,#100 ; compare to limit

bge DONE ; if above or equal , done

... ; do whatever code in the loop

add r0 ,r0 ,#1 ; increment index

b LOOP ; branch always back to repeat loop

DONE

• again, the labels are arbitrary

• The compiler (if you do gcc -S to see assembly output)

will change this to a while loop.

16

• Why? Maybe works better for branch predictor?

17

Example Code Translation – While Loop
int x=0;

while(x <100) {

x++;

}

mov r0 ,#0 ; init loop index

b CHECK ; skip ahead to condition check

LOOP

...

add r0 ,r0 ,#1

CHECK

cmp r0 ,#100 ; compare to see if at end

blt LOOP ; if less than equal , branch back to LOOP

18

Example Code Translation – Do - While
Loop

int x=0;

do {

x++;

} while(x <100);

mov r0 ,#0

; this is just like while loop

; but no branch , so always executes once

LOOP

...

CHECK

cmp r0 ,#100

blt LOOP

19

How would you do an infinite loop?

20

Lab #4 Preview

• Redo Lab#1, but in Assembly language
• RCC ->AHB2ENR |= RCC_AHB2ENR_GPIOBEN;

• #define PERIPH_BASE ((uint32_t)0 x40000000)

#define AHB1PERIPH_BASE (PERIPH_BASE + 0x00020000)

#define RCC_BASE (AHB1PERIPH_BASE + 0x1000)

#define RCC ((RCC_TypeDef *)(RCC_BASE))

• ldr r1 ,= RCC_BASE

ldr r3 ,[r1 ,# RCC_AHB2ENR]

orr r3 ,# RCC_AHB2ENR_GPIOBEN

str r3 ,[r1 ,# RCC_AHB2ENR]

21

