
ECE 271 – Microcomputer
Architecture and Applications

Lecture 9

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

15 February 2022

http://web.eece.maine.edu/~vweaver

Announcements

• Read Chapter 3.5 to 3.7

• Lovebyte Update

• Lab schedule update

Finish Lab#3 (keypad) as soon as possible

Start Lab#4 as soon as possible

Next week is catch-up lab to finish any outstanding labs

Note no Monday lab on Monday due to President’s day

1

Lab #4 Notes

• Redo Lab#1, but in Assembly language

2

Lab #4 Notes

We want to convert the following C to assembly
RCC ->AHB2ENR |= RCC_AHB2ENR_GPIOBEN;

A lot is going on in provided code. Some low-level C

and preprocessor directives are used to make RCC be a

pointer to address 0x40021000. A cast is used to make

this pointer be of type RCC Typedef which has the offsets

for the various sub-registers (see next slide)
#define PERIPH_BASE ((uint32_t)0 x40000000)

#define AHB1PERIPH_BASE (PERIPH_BASE + 0x00020000)

#define RCC_BASE (AHB1PERIPH_BASE + 0x1000)

#define RCC ((RCC_TypeDef *)(RCC_BASE))

3

Lab #4 Notes

• Do we remember how structs work in C?

• What’s the difference between a.b vs a->b

• The latter is indexing from a pointer

4

Lab #4 Notes

The RCC Typedef is in the provided stm32l476xx.h
typedef struct {

__IO uint32_t CR; // Control Register , offset 0x00

....

__IO uint32_t AHB2ENR; // AHB2 periph control , offset 0x4c

....

} RCC_Typedef;

The key understanding is that we want to access the 32-bit

value that’s at offer 0x4c from the beginning of the base

5

Lab #4 Notes

The code that implements the register setting can be done

like this:
ldr r1 ,= RCC_BASE ; r1=&RCC

ldr r3 ,[r1 ,# RCC_AHB2ENR] ; r3=RCC ->AHB2ENR

orr r3 ,# RCC_AHB2ENR_GPIOBEN ; r3 = r3 | RCC_AHB2ENR_GPIOBEN

str r3 ,[r1 ,# RCC_AHB2ENR] ; RCC ->AHB2ENR = r3

We provide defines in assembly which you can use for

value/masks rather than having to do the raw hex codes.

6

Clearing values

• use the BIC instruction to clear bits

Why not just use AND? Because a mask has lots of 1s

might not fit in available constant room
and r3 ,#0 xffffffffe ; wont fit in instruction , too big

bic r3 ,#1 ; same as: and r3 ,#~1 but fits in constant

• You can usually include complicated C-stye constant

manipulations, things like
and r3 ,r3 ,#(GPIOBEN + 0x5 | (1<<3))

though note that the Keil assembler might not support

the full range

7

Something-cool Notes / BSRR

• Using the BSRR register to set/reset GPIO pins without

having to do a read/modify/write.

• Atomic operation?

• Bit set/reset Register.

◦ Write a bit pattern of 0 or 1

◦ 0 means leave alone

◦ In bottom 16-bits, 1 means set that GPIO to 1

◦ In the top 16-bits, 1 means reset that GPIO to 0

8

Assembler – Code comments

• Can use C and C++ style comments

• Keil: can use ; (makes rest of line a comment)

• Linux/gas: Can use @ for beginning of line

9

Functions/Subroutines

• Why use them?

10

Sample C
int sum(int a, int b) {

return a+b;

}

int main(int argc , char **argv) {

int result;

result=sum (1 ,2);

}

11

Sample Assembly
sum

add r0 ,r1 ,r2 ; result=arg1+arg2

bx lr ; jump to saved address in link register

main

mov r0 ,#1 ; set arg1 to 1

mov r1 ,#2 ; set arg2 to 2

bl sum ; call sum function , put current

; program counter +4 into link register

12

Subroutines on ARM

• bl branch and link instruction

◦ Sets the link register LR (r14) as the memory address

of the next instruction immediately after the BL (PC+4

on Thumb-2)

◦ Adjust the PC to be the memory address of the first

location of where we want to transfer execution

• After executing, LR has the return address

13

Returning from a Subroutine

• Use the BX LR instruction, which says to branch to

the address located in the LR register. (the X is for

exchange; historical THUMB reasons)

14

Saving/Restoring values in functions

• To preserve registers at start of function can
push {r0 , r1 , lr}

• You will want to save the link register if not a leaf

function (meaning, you call another function from inside)

• At end you can
pop {r0 , r1 , lr}

before using bx lr to return

• Alternately, if the LR register was pushed on the stack,

you can use the clever hack of doing
pop {r0 , r1 , pc}

15

to pop the link register directly into the PC to return

without the extra branch

; p164

16

The ABI – The Application Binary Interface

• A Document, produced often by the processor maker

• An agreement of how functions / code talk to each other

• A common standard so compilers, libraries, and code can

call each other and know how to set things up

• Useful to have for your own code. Might be slightly

less efficient, but better than for every function you call

having to save/setup different registers

• What kinds of things are included?

◦ What registers to put things in? Register allocation?

17

◦ Alignment of stack (4 bytes? 8 bytes?)

◦ How to pass 8/16/32/64 byte values

◦ How to pass floating point values

◦ Where does the return value go?

◦ System calls

◦ Frame pointer

18

ARM ABI

• On Linux there have been at least 4

• armbe – big endian

• armle – little endian

• EABI – extended (new) ABI

• armhf – EABI but fancier (hard) floating point support

19

Calling Conventions

• r0/r1/r2/r3

◦ parameters/scratch

◦ caller saved, so if you want the value in say r3 to be the

same after a function call you have to save it/restore

it to memory

◦ r0/r1 also used as return value from function

• r4/r5/r6/r7/r8/r10/r11 = variables

◦ callee saved. You can count on this having the same

value after a function as before. If you are in a function

20

and want to use it, must save/restore it. Often this

done at function entry/exit

• r9 – implementation dependent (thread-local register?)

• r12 = reserved by linker?

• r13 = stack pointer

• r14 = LR (link register)

• r15 = PC (program counter)

21

Calling Conventions – Corner Cases

• Return value in r0. Might be in r1 or more if bigger than

32 bits

• What happens if more than 4 arguments?

• What happens if more than 32-bits (use 2 registers,

even/odd for 64-bits)

22

Calling Conventions – Corner Cases

• How do you pass something complicated like an array or

struct?

• Call by value or by reference

• Can pass a pointer in a 32-bit register

23

Disassembler
#include <stdio.h>

int i;

int main(int argc , char **argv) {

for(i=0;i <100;i++) {

printf("Hello!\n");

}

return 0;

}

gcc -Wall -mthumb -march=armv7-a -o test test.c

Disassembly of section .bss:

0002102c <i>:

2102c: 00000000 andeq r0 , r0 , r0

Disassembly of section .rodata:

000104 fc <_IO_stdin_used >:

104fc: 00020001 andeq r0 , r2 , r1

24

10500: 6c6c6548 cfstr64vs mvdx6 , [ip], #-288 ; 0xfffffee0

10504: Address 0x00010504 is out of bounds.

0001043c <main >:

1043c: b580 push {r7 , lr}

1043e: b082 sub sp , #8

10440: af00 add r7 , sp , #0

10442: 6078 str r0 , [r7 , #4]

10444: 6039 str r1 , [r7 , #0]

10446: f241 032c movw r3 , #4140 ; 0x102c

1044a: f2c0 0302 movt r3 , #2

1044e: 2200 movs r2 , #0

10450: 601a str r2 , [r3 , #0]

10452: e010 b.n 10476 <main+0x3a >

10454: f240 5000 movw r0 , #1280 ; 0x500

10458: f2c0 0001 movt r0 , #1

1045c: f7ff ef42 blx 102e4 <puts@plt >

10460: f241 032c movw r3 , #4140 ; 0x102c

10464: f2c0 0302 movt r3 , #2

10468: 681b ldr r3 , [r3 , #0]

1046a: 1c5a adds r2 , r3 , #1

1046c: f241 032c movw r3 , #4140 ; 0x102c

10470: f2c0 0302 movt r3 , #2

10474: 601a str r2 , [r3 , #0]

25

10476: f241 032c movw r3 , #4140 ; 0x102c

1047a: f2c0 0302 movt r3 , #2

1047e: 681b ldr r3 , [r3 , #0]

10480: 2b63 cmp r3 , #99 ; 0x63

10482: dde7 ble.n 10454 <main+0x18 >

10484: 2300 movs r3 , #0

10486: 4618 mov r0 , r3

10488: 3708 adds r7 , #8

1048a: 46bd mov sp , r7

1048c: bd80 pop {r7 , pc}

26

Assembler directives

• AREA – declare a new area (code/data/bss)

AREA myData, DATA, READWRITE

• ENTRY – declare entry point into the code

You might think this is “main” on C, but actually it is

usually somthing called start, a lot of things happen

before main() gets called

• ALIGN – align the current memory address

for performance, or some things (like variables on stack)

must be aligned

27

• DCB – reserve space for bytes

array DCB 1,2,3,4

hello DCB ”Hello World!”,0

• DCW – reserve space for 16-bit values

• DCD – reserve space for 32-bit values

• DCFS/DCFB – floating point

• SPACE – restore unreserved data (BSS)

p SPACE 255 ; reserve 255 zeros

• FILL – reserve space and fill it with a value

f FILL 20,0xff,1 ; allocate 20 bytes, fill with 0xff

• EQU – like #define in C, lets you set constants.

28

MAXCPUS EQU 8

On Linux same, but .equ MAXCPUS, 8

• RN – alias a register name, if you want to use something

like X instead of R3

• EXPORT/IMPORT – export says to make symbol

globally visible (.globl on Linux). Import says a symbol

is external, like “extern” on C.

• INCLUDE/GET – like include directive in C, includes

another file when assembling

• PROC/ENDP – start and end of function. Mostly

to make debugging easier? Doesn’t actually change

29

generated code?

30

