
ECE 271 – Microcomputer
Architecture and Applications

Lecture 10

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

17 February 2022

http://web.eece.maine.edu/~vweaver


Announcements

• Read Chapter 2, Chapter 16

• Please have the prelab done by the beginning of the lab

section

• The TA is handling deadlines for the labs so check with

him first if you have questions about those. If you have

concerns about his decisions then feel free to bring them

up with me.

1



The Debugger / Debugging

• Debuggers let you track program behavior while code is

running. Often the best way to find/fix problems in your

code.

• Alternatives:

◦ Code inspection – even the best programmers can

struggle at that

◦ Lots of printf()s – not really practical on embedded

system

2



Keil Tools

• Is it the best debugging environment ever?

No, but it’s not the worst either

• As an aside, why does Keil give away their tools for

“free”?

3



How does it work?

• A bit hardware dependent

• Usually a mechanism that allows halting running system

and reading out all of the hardware state (most

importantly the program counter, stack, registers, and

memory contents)

4



Setting breakpoints

• Set a location in code where you want execution to stop

• Maybe you want to stop after you’ve done initialization

so you can check the register contents match what they

should be

5



More info on the Program Counter
8000010 4990 ldr r1 ,[pc ,#256]

8000012 6ccb ldr r3 ,[r1 ,#76]

8000014 f043

8000016 0302 orr r3 ,r3 ,#2

8000018 69c4 str r3 ,[r1 ,#76]

...

8000110 40021000 (constant)

• PC is at 80000010, so loads the ldr instruction there

from memory loads the memory value located at address

of pc+256, stores in r1 instruction done, increments PC

to 8000012

• PC is at 80000012, so loads the ldr instruction from

memory and decodes loads the memory value located

6



at address of r1+76, stores in r3 instruction done,

increments (this insn was 2 bytes so to 8000016)

• PC is at 800000106, so loads the orr instruction from

memory and decodes orrs the value in r3 with constant

#3, stores in r3 instruction done, increments PC to

8000018

7



Looking at register contents

• This is when knowing assembly language can be useful

8



Setting watchpoints

• Can stop execution if value at a memory address is

changed

• Useful if a variable ends up with a value and you have

no idea how it’s getting that value. Set a watchpoint

and hit ”run” until the value changes

9



Single Stepping

• Once you have a breakpoint near the beginning of where

things go wrong, you can single-step through each line

of code (or assembly) to make sure the program is

executing properly

10



Callstack / Stack backtraces

• When you stop, the debugger can look on the stack and

show you all functions that were called to get where your

code is

• Often it can show you the calling parameters too, though

sometimes these get optimized away/over-written so be

careful of that

11



Processor Exceptions

• If your code does something invalid it can trigger an

exception / interrupt that might unexpectedly jump your

code to a handler

• Since we have no operating system you won’t get notified

of this, you’ll just find your code stuck at one of the

exception handler stubs

• A few that are easier to hit

◦ Invalid instruction

◦ Invalid memory access

12



More ARM/Thumb2 instructions/features

• These aren’t needed for the lab, but can be useful to

know about

• As always, working code is much more important than

clever code

13



Conditional Execution

• Note: this is an advanced/obscure technique I am

mentioning for completeness, you don’t have to know

how to use it for this class

• On ARM32 could prefix *any* instruction with condition

flags, i.e.
addeq r1,r2,r3 ; only does the add if Z=1

addmi r1,r2,r3 ; only does the add if N=1

• On Thumb2 they re-used these encoding bits (the left 4

bits of the instruction) to implement the Thumb-2 set,

14



so you cannot do this anymore.

• There is a hack called IT, where you can do up to four

instructions. The condition has to be the same (Then)

or the opposite (Else)
itete cc

addcc r1 ,r2 @ then

addcs r1 ,r2 @ else

addcc r1 ,r2 @ then

addcs r1 ,r2 @ else

15



Other Obscure THUMB2 Instructions

16



CBZ/CBNZ

• CBZ r0, label

• Special compare-and branch instruction, not change flags

• Can only branch forward

17



TBB

• TBB [r0, r1]

• Table-branch byte

• r0 is pointer to table, r1 is offset into table

• Can be used to make switch statements/jump tables

18



Saturating Arithmetic

Used in some algorithms, saturate at high or low value

rather than wrapping around.

• QADD

• QSUB

• SSAT

• USAT

19



Parallel Arithmetic

Can split 32-bit register up into 16 or 8 bit chunks and do

arithmetic in parallel (which is faster)

• ADD16

• SUB16

• ADD8

• SUB8

• ASX

• SAX

• USAD8

20



• USADA8

• SEL (select) – comparisons when doing parallel match

can set special multiple-GE (greater/equal) register in

the ASPR and bytes can be selected based on this

21



Count Leading Zeros

• CLZ – count leading zeros

22



Sign/Zero Extension

• SXTB – sign extend a byte

• SXTH – sign extend a halfword

• UXTB – zero extend a byte

• UXTH – zero extend a halfword

23



Sign/Zero Extension with add
(Cortex-M4/DSP)

• sxtab rd, rn, rm, rotation

rotate rm right by multiple of 8, extract bottom 7 bits,

sign extend, add to rn, store in rd

• SXTAB – sign extend a byte

• SXTAB16 –

• SXTAH – sign extend a halfword

• UXTAB – zero extend a byte

• UXTAB16 – zero extend a byte

24



• UXTAH – zero extend a halfword

25



Pack Instruction (Cortex-M4/DSP)

• pkhbt rd, rn, rm, lsl value

combine bits 15:0 of rn with bits 31:16 of shifted value

from rm

• pkhtb rd, rn, rm, asr value

combine bits 31:16 of rn with bits 15:0 of shifted value

from rm

• PKHTB – pack halfword top and bottom

26



Bitfield

• BFC rd, #lsb, #width – bitfield clear

• BFI rd, rn, #lsb,#width – bitfield insert

• SBFX rd,rn, #lsb,#width – signed bitfield extract

• UBFX rd, rn, #lsb,#width– unsigned bitfield extract

27



Bit/Byte Reversing

Useful for handling endianess, network packets, etc.

• RBIT – reverse bit oder

• REV – reverse byte order

• REV16 – reverse byte order halfword

28



Nop

• nop – no-operation

• Why is this useful?

• Padding code?

• Temporarily commenting out code w/o changing size?

• Delays that do nothing?

• How would you implement this? Are there instructions

you can think of that would do nothing? add r0,r0,#0?

29



Sleep

• What should your device do when not busy?

• Enter a busy infinite loop?

• Wouldn’t it be better if you could let the chip know and

it could go to sleep / enter low-power mode?

• These do that, and an interrupt (such as a timer or

hardware change) can wake the processor and start

running code again

◦ wfi – wait for interrupt

◦ wfe – wait for exception

30



System Registers

To configure the processor there are special registers

beyond the standard ones. These instructions let you

copy values into/out-of these special registers.

• MSR – move from system register

• MRS – move to system register

31



System Calls

• svc

• We don’t deal with it in this class, but if you have an

operating system you need some way to have your code

raise an exception to change security level or let upper

layers of software know you need something

32



Vector/FP/NEON/DSP

• The Cortex-M4 can handle floating point values

• We will discuss this later in class

• There’s a whole separate set of instructions/registers for

this

33



Non-ARM instructions you might see
someday

• branch delay slots

• VLIW (Dsp, GPU, itanium)

• Register windowing

• Really CISC instructions

34


