
ECE 271 – Microcomputer
Architecture and Applications

Lecture 12

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

24 February 2022

http://web.eece.maine.edu/~vweaver

Announcements

• Read Chapter 16 for Stepper Motor info

• Read Chapters 7 and 8

• Midterm, likely 8 March (two weeks)

more info on that as it gets closer

1

Stepper Motors

• How do normal motors work?

• What if you want accurate positioning of result?

• Servo-motors (we’ll deal with them in a future lab) have

some sort of sensor that provide feedback on positioning

• Stepper motors also allow exact positioning, but by

carefully stepping one position at a time

2

Bi-Polar Motors

• (See figure 16-1 in book)

• Use single coil to set S or N

• Need to fully reverse polarity of voltage to switch polarity,

which requires H-bridge

3

Uni-Polar Motors

• (See figure 16-2 in book)

• Coil tapped in middle. So can switch polarity by applying

voltage to either end

• Only half of coil energized so not as strong as bi-polar

4

Stepper Internals

• (See figure 16-6 in book, movies from prelab)

• Two permanent magnets with alternating teeth, S N S

N S N

• Offset coils, when activate attract

• Need to send precise set of waveforms to

increment/decrement by one step

5

Driving the Motor

• Stepper motor around 50 Ohms resistance, 5V, so V=IR,

I=V/R, I=5/50 = 100mA (0.5W)

• Can the GPIO pins provide 100mA of current?

No, then can only provide 10mA

• So instead we used a ULN2803 Darlington Array

(See the ULN2803 datasheet for diagram)

• This amplifies the current using darlington-connected

transistors

• Also includes diodes to avoid kickback (when you stop

6

powering motor, inductance in magnetic field collapses

and sends back-current into the inputs and can fry chip)

7

Connecting the Motor

• We will use 4 GPIOs (PB2, PB3, PB6, PB7)

• Also connect the board to 5V and GND

• Use the 5V pin

8

Notes on Voltages on the Board

• 5V – presumably 5V regulated

• 5V I – input, if supplying 5V externally

• 5V U – 5V coming in from the USB cable(?)

• VBUS – 5V from the USB OTG controller(?)

• 3V3 – regulated 3.3V

• 3V – regulated 3V

• 2V5 – regulated 2.5V

9

Wave Stepping

See figure 16-8 in book.

0 1 2 3 4

PB2 :____: : : :

A | |____:____:____:

PB3 : : :____: :

!A :____:____| |____:

PB6 : :____: : :

B :____| |____:____:

PB7 : : : :____:

!B :____:____:____| |

10

Full Stepping

Higher torque as pushing *and* pulling (see Fig 16-9)

0 1 2 3 4

PB2 :____:____: : :

A | |____:____:

PB3 : : :____:____

!A :____:____| : |

PB6 : :____:____: :

B :____| : |____:

PB7 :____: : :____:

!B : |____:____| :

11

Half Stepping

• Pattern is A!B, A, AB, B, !AB, !A, !A!A, !B

• Smoother and can got half-steps

• Can be less torque

• See Figure 16-11 in book

12

Micro-Stepping

• Instead of being full on or off, instead set partial voltages

• Generally sine/cosine on A/B.

• Smooth transition. Lot more complicated.

• How would you generate not-full voltage using GPIOs?

DAC? PWM?

• See Chapter 16.6 in book

13

Steppers – Lab

• Will do both Full and Half stepping

14

Steppers – Programming

• To do this, we will use 4 GPIOs to control things

• The BSRR register makes it a bit easier to set/clear the

GPIO pins at the same time.

• We will use 4 pins in the GPIOB register

• There will be a pattern we send on the pins that will

cycle through and advance the stepper

• Function where you enter angle, and it rotates that much

15

Programming

• Delay with busy loop

16

Calculating Angle in C

• Motor is 32 full steps per revolution

• However it has gear reduction of 64, so 2048 steps

• So it takes 2048/4=512 repeats of the 4-step pattern to

rotate 360 degrees when doing full-stepping

17

Calculating Angle in C

• Don’t use floating point in the lab

It might work, but we haven’t learned about it yet.

• Multiply/divide ordering in C

◦ steps=(512*degrees)/360;

◦ steps=512*(degrees/360);

◦ are the above equivalent? Mathematically, yes.

In C, no. When using 32-bit integers, a number like

270/360 is going to evaluate to ”0.75” which C will

truncate to ”0”, not giving the result you expect.

18

Apple II example

• Stepper motors used when need exact control

Example: Disk][drive in original Apple II

Unusual in that it was purely software controlled, leading

to lots of interesting copy protection methods

19

Character Encodings

• What makes a text character?

◦ Our processor only understands binary.

◦ The letter ’A’ we say is 65 (0x40).

◦ Is that implicit in the processor or in the nature of the

letter ’A’?

◦ No, it’s arbitrary

◦ Why have a standard like this? Otherwise it would

be impossible to communicate text! Every computer

would treat letters differently.

20

• ASCII – American Standard Code for Information

Interchange

◦ Standard from the 1960s

◦ Nice features

◦ Numbers are consecutive, from 0x30-0x39 (easy to

convert to decimal)

◦ Letters are consecutive

◦ Lower case has constant offset from uppercase, easy

conversion

◦ Technically 7-bit. What do you do with 8-bit? Parity?

Extended characters?

21

◦ Also control chars in bottom. Things like BELL

(control-G), linefeed, carriage return, escape, etc.

• EBCDIC – IBM’s standard. There were others. Some

put char in 6 bits.

• Old systems missing chars? Uppercase only? How did

people cope? How did the C compiler cope? Trigraphs.

• What about non-English languages. ess-tset? Umlauts?

• Unicode? 16-bit?

wchar t? Windows? Java? Will all languages fit in

16-bits? no

• UTF-8?

22

Top bit 1 indicates more than 1-byte long, can encode in

up to 4 bytes. Regular C string manipulation will work

on UTF-8, 7-bit ASCII is a subset

• Combining chars, security aspect of letters that look the

same

• Politics involved.

• Emojis?

23

