
ECE 271 – Microcomputer
Architecture and Applications

Lecture 13

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

1 March 2022

http://web.eece.maine.edu/~vweaver


Announcements

• Read Chapters 7 and 8

• Midterm, Tuesday, 8 March

will send out worksheet with flags sample problem

1



Some C Gotchas

• Many errors are just obscure C coding issues

• Index variable scoping
int j;

for(j=0;j <100;j++) {

...

for(j=0;j <1000;j++) ; // delay

}

• Operator precedence
if (x & 0x10 ==0) {

// actually is

if (x & (0x10 ==0))

A safe bet is to just use extraneous parenthesis

2



Coding Style

• Some people were asking if we were enforcing coding

style in this class?

• Coding style is one of those things that varies from

person to person and project to project and is hard to

quantify.

• Does C have any rules about code formatting? Very

few, see https://www.ioccc.org/

• People can be very opinionated.

• Some examples of coding style:

3

https://www.ioccc.org/


◦ Indentation: tabs vs spaces (and how many)

◦ Width of screen/wrapping: 80 col or more?

◦ Variable names: new x size, NewXSize (camel case),

Hungarian Notation (strName) with type info

◦ Length of identifiers (old compilers ignored any past

6)

◦ Curly bracket on same line or next

◦ Header files include bare minimum, or include all

◦ Header files alphabetical, at end, Christmas tree (for

git collision reasons)
◦ if (x==0)

if (0==x)

4



Register Allocation

• Should you leave your variables in RAM?

• Modern machines RAM is slow (though not as bad on

the boards in class)

• Try to have frequently used values in registers if at all

possible

• Long-running values left in as long as possible

• Once done using register, can re-use it for another

variable

• Live range

5



• Compilers try to do this automatically

6



Subroutines / Functions

• Why use them?

◦ Understandability (easier to follow short blocks of

code)

◦ Disk/RAM space (takes up less room than

cut/pasting)

◦ Centralizing code (find a mistake, only need to fix it

once)

◦ Re-usability (can reuse code again)

◦ Performance? This is complex. Can lead to smaller

7



code fitting in caches, but at same time branches are

expensive and have overhead

• Avoiding overhead

◦ What if function only used once, should we just include

it in main code to avoid function call overhead?

◦ Modern compilers will try to do this for you, inlining

◦ Some C compilers have an inline keyword where

you can try to force the function to be inlined for

performance

8



Putting Common Subroutines in Own File

• For example, what if want to put print lcd() function

into lcd.c

• How could you call it from main.c?

• You can pre-declare it extern at the top of your file (in C

actually extern is the default for all function definitions)

• Often if you want to share code like this, you put the

extern definition into a header file, something like lcd.h

and then #include "lcd.h"

• To make a function only visible in the file it’s in (the

9



opposite of extern) declare it static

• When compiling, the C compiler makes assembler and

then assembles to .o object files. These have placeholders

for any external routines. Finally it calls the linker which

goes through and joins all the files together and patches

up all the calls to external routines to point to the write

place, finally making the executable.

• Note: could you just put your C code in a header file

(not just the definition, but all the code) and include

that? You could, usually frowned upon. Try to avoid

having code in header files.

10



The Stack – Review

• Chunk of memory, LIFO.

• On ARM by default grows down, ”Full”

(full means points to last value pushed, empty would

point to next)

• Why does it grow down? Can it grow up?

Most processors assume you will grow down as it tends

to maximize usable space. You often put the stack as

high up as possible so it has lots of room to grow down.

11



Global vs Local vars

• Memory layout diagram again

• Code/text (usually read only)

• Data (globals) initialized variables

• BSS (uninitialized / zeroed global variables)

usually the OS clears these out, on our system we include

startup code that does this

• Heap (dynamically allocated: malloc or new), grows

“up”

• Stack, typically toward the top of memory, grows down.

12



Temporary variables and local variables

13



Stack Instructions

• ARM has complex stack manipulation instructions

LDM/STM but these days people tend to just use

push/pop

• push {R4}

SP=SP-4. [SP]=R4

• pop {R4}

R4=[SP]. SP=SP+4

• Push/Pull multiple.

14



push {r1 ,r2 ,r4 ,lr}

can push multiple registers in one instruction, equivalent

to pushing one at a time

• Returning shortcut
push {lr}

pop {pc}

special case, can pop link register into PC which will

return from a function

15



Function Prolog

• First thing an assembly language function does is save

the link-register (if it’s not a leaf function)

• It also needs to save any callee saved registers that will

be used by the function (r4 - r11)

• It will also need to reserve room for local variables

16



Local Variables

• In C, local variables are stored on the stack

• This gives them a lifetime of only while function is

running

• Space is allocated in prolog by moving stack pointer

• i.e., to allocate an integer (32-bit) array with 100 entries

sub sp ,sp ,\#400

• To find the address you need to index into the stack

properly

Often a “frame pointer” (r11) holds a pointer to where

17



the stack begins to make this easier

• Otherwise as you use the stack in the program it can be

hard to remember when the local variables live

• Is the stack initialized to any value when you allocate?

◦ In C, usually no

◦ So if you forget to initialize a local variable it can end

up having whatever value was left of the stack from

earlier code.

◦ This can be really hard to debug, as doing things like

printf() can move the stack and change the values

there and your code might accidentally work

18



◦ Is this a security problem?

• Stack overflow bugs

◦ What happens if you accidentally index off the end of

the stack?

◦ can you accidentally over-write the saved return-

address?

◦ What happens then? best-case crash. worst case,

clever hacker can return to somewhere they can control,

take over system

19



Function Epilog

• First deallocate any local variable space on stack

add sp ,sp ,\#400

• Next restore any registers that were saved

• Finally pop off the link register (if we weren’t a leaf

function) and return to the calling routine

20



Recursion

• Very CS thing to do

• Function calls itself

• ECE / embedded not like to do it much. Why?

What happens when run out of stack?

• Can be useful. Think compilers?

• You’ll see it in Google interviews

21



Factorial Example

• n! = n * (n-1) * (n-2) ... * 1

• A normal person would implement it like
int factorial(int n) {

int result =1;

for(i=1;i<=n;i++) result *=i;

return result;

}

22



Factorial via Recursion

• factorial(0) = 1

• factorial(1) = 1 = 1*factorial(0)

• factorial(2) = 2 = 2*factorial(1)

• factorial(3) = 6 = 3*factorial(2)

23



Factorial Example – C
int factorial(int n) {

if (n<2) return 1;

return (n*Factorial(n -1));

}

24



Factorial Example – Assembler
factorial

push {r4,lr} // save r4 (why?) save lr (why?)

mov r4 ,r0 // copy input arg to r4

cmp r4 ,#2

bge else // if 2 or greater skip ahead

mov r0 ,#1 // otherwise return 1

b factorial_exit

else

sub r0 ,r4 ,#1 // arg is oldarg -1

bl factorial

mul r0 ,r4 ,r0 // return value in r0

// multiply by r4 (which was saved across call)

factorial_exit

pop {r4 ,pc} // why have only one exit to function?

_start

mov r0 ,\#0x3

bl factorial

stop

b stop

25


