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Announcements

• Read Chapter 12.1, 12.4

• Midterm next Tuesday, review in class Thursday
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Floating Point / Fixed Point

• We have been working with integers, signed and

unsigned.

• How can you represent fractional numbers?

• How does it work in base 10?

1234.56 = 1× 103 + 2× 102 + 3× 101 + 4× 100 + 5×
10−1 + 6× 10−2

• You can do the same thing in binary (base2)

1010.10 = 1×23+0×22+1×21+0×20+1×2−1+0×2−2

This is 10.5 in decimal
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• You can do this for arbitrary bases.

You have to keep track of the decimal or “radix” point

handled
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Fixed Point

• Fix the decimal point somewhere inside the number

• In decimal, note that 123.45 + 12.51 is the same as

12345+1251, just you move the decimal point.

• So we can have fractional parts of integers by just moving

the decimal point.
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Fixed Point – Notation

• UQm.n = Unsigned fixed point, m bits to left of point,

n bits to right

• Qm.n = Signed fixed point, m bits to left (one is sign

bit) n bits to right
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Fixed Point – Size

• Tradeoff in m vs n values

• Accuracy – how close it is to the number you are trying

to represent

• Resolution – the smallest change that will give you

another value
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Fixed Point – UQ16.16

• Q16.16 – 16 bits of integer, 16 bits of fraction

• Use regular integer register and regular math

• Limited range, you now have smallest max value you can

have

• Also need to track the radix point yourself

• Binary example

• 101.111 = 5 + 0.25 + 0.125 = 5.375
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Fixed Point – Q16.16

• Two’s complement signed

• Note: TI-Style Q notation sign bit isn’t counted: Q15.16

• AMD variant sign bit is: Q16.16

• -4.25, first do 4.25 0100 0100, twos complement whole

thing 1011 1100
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Addition

• Straightforward. Make sure Q for both is the same and

just add as normal

• 0101.1 + 0101.1 = 1011.0
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Subtraction

• Just like addition
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Multiplication

• Think about decimal. 10.1 * 2.0 = 20.2

but how do you do it

10.1

2.0

=====

000

202

=========

2020
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Then you shift the point left by the number to the right of the decimal point

20.2

• What you are doing is 101 × 10−1 times 20 × 10−1 so

you can do the first, then do the second

• Regular multiply

• Need to adjust radix point back

• Example, 2.5 * 2.5

◦ 0010.1 * 0010.1 = 0000 0000 0000 0010 1000 0000

0000 0000

◦ 0x28000*0x28000 = x6 4000 0000 Q16.16*Q16.16 =

Q32.32
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◦ Need to shift right by 16 (>> 16) to get final result

= 0x6 4000 = 6.25
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Multiplication – Assembly Language

• A 32x32 multiply gives a 64-bit result

• How does this work on 32-bit processor?

• ARM MUL (multiply) instruction only updates the lower

32-bits of result

• ARM has special SMULL/UMULL instructions that take

two 32-bit destinations so you can get the whole result

• To convert the result of a 16.16 multiply back from

32.32 you need to combine the bottom 16 bits of the

top with the top 16 bits of the bottom
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• You can do that with two shifts and an OR
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Division

• Similar to multiply

• 0x28000 / 0x28000 = 1 Q16.16 / Q16.16 = Q1. <<
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What happens to fraction part?

Shift dividend by << 16 first before divide to not lose a

lot of precision

16



Converting to int

• Just shift right by Q to truncate

• Rounding is straightforward, add one if the first fraction

bit is 1 (meaning the fraction is 0.5 or higher)

• Easy to do because shifts will put the last shifted off bit

in the carry.
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Overflow

• Can be a problem
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Why ARM is good at fixed point

• barrel-shift instructions
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Can you exactly represent all numbers?

• In decimal, 1/3? No

• In binary, only combinations of powers of 2. So even

things like 1/5 (0.2) you can’t represent exactly.

• Irrational numbers like Pi?
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Arbitrary Precision Number Libraries

• If you need *exact* values

• Tend to be slow and use lots of RAM, but give exact

results
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Fixed Point Limited Range

• What if you want to operate on numbers with different

Q values

• What if you want to add very large or very small numbers
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Fixed Point Benefits

• Can be faster than floating point

• Uses existing integer registers / ALU

• Works on machines without floating-point unit

• For certain ranges of numbers can have better accuracy

(no bits are wasted on exponent)
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Floating Point Drawbacks

• special hardware

• power hungry, if not commonly used

• chip area, expense

• back in day, special chip

• rounding issues

• money calcs. 1/10 only approximate. .0001100110011

• trouble near zero
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Floating Point on Cortex-M4

• Optional on Cortex-M. Our boards do have it though.

• Thirty-two 32-bit (float) registers S0 to S31

• Four special registers

◦ CPACR – coprocessor access control reg

◦ FPCCR – floating point context control

◦ FPCAR – floating point context address

◦ FPSCR – floating-point status and control
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Double Precision?

• The S registers can also be read as sixteen 64-bit registers

D0 to D15. D0 contains S0 and S1, D1 contains S2 and

S3

• You can’t do 64-bit (double) math on the Cortex-M4 in

hardware

• The C compiler will emulate in software behind your

back
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FPU – ABI Differences

• When passing fp arguments put them in the registers.

• Up to 16 32-bit or 8 64-bit can be passed

• If you mix and match S/D then it gets complicated

• What if you want to pass more? Goes on the stack

• If result is fp return in S0/D0
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IEEE 754 Standard
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Enabling Floating Point

• The FPU is disabled by default

• Have to enable CP10 and CP11 (CP10 is single, CP11

double)

• Need to use memory barriers

• Note this is Cortex-M4 specific, it’s slightly different on

other ARM processors

; Enable FPU (from Cortex -M4 Technical Reference , 7-1)

; CPACR is located at address 0xE000ED88

LDR.W R0 , =0 xE000ED88

; Read CPACR

LDR R1 , [R0]

; Set bits 20-23 to enable CP10 and CP11 coprocessors
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ORR R1 , R1 , #(0xF << 20)

; Write back the modified value to the CPACR

STR R1 , [R0]

; wait for store to complete / reset pipeline (necessary ?)

DSB

ISB

30



Why enable Floating Point?

• First, why disable? Can use power

• Enable it if you want to use FP

• Any downsides to using FP?

• One is that if you have an operating system and context

switching it’s more registers you have to save/restore

• Some code intentionally won’t use it (Linux kernel for

example, by default can’t use FP in kernel. What to use

instead? Fixed point often, milicelsius)
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Any use of FPU if not doing math?

• memcpy() is a highly optimized routine

• Why not just for(i=0;i<1000;i++)a[i]=b[i];?

• Byte-by-byte is OK

• What if we copied integers (32-bit) instead? Would it

be 4 times faster?

• Yes, but watch out for corner cases (i.e. starting/ending

not on an aligned 4-byte boundary)

• Could we make it even faster? ARM FP allows

loading/storing 64-bit doubles, 8 bytes at a time
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• There’s even load/store multiple on ARM so can copy

bigger chunks

• Why do you want fast memcpy? Lots of reasons. Talk

a bit about 2D game programming for one.
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Floating Point Status and Control Register
(FPSCR)

• Has the N/Z/C/V bits set by the VCMP instructions

Integer instructions cannot use these, have to cop it to

the APSR using the VMRS instruction first

• Has control bits

◦ Alt half-precision

◦ Default NaN

◦ Flush-to-zero

◦ Rounding mode
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• Has exception bits

◦ Input Denormal

◦ Inexact Cumulative

◦ Underflow Cumulative

◦ Overflow Cumulative

◦ Division by Zero cumulative

◦ Invalid Operation cumulative

35



Rounding Modes

• 00 Round to nearest (default)

• 01 Round to +infinity

• 10 Round to -infinity

• 11 Round to zero
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Non-standard Modes

• Also supports some modes not in IEEE 754

◦ Flush-to-zero (subnormals go to 0)

◦ Default NaN

◦ Alternative half-precision mode (16-bits, can get extra

precision vs IEEE by not allowing infinity or NAN but

gaining a bit)
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Exceptions / Interrupts

• Underflow/Overflow – when number is too small/big to

represent

• Inexact exception – result lies between two floating point

numbers, had to be rounded

• Invalid operation – things like 0 times infinity, infinity -

infinity, sqrt(-1)

• Divide-by-zero

• Denormal (value to small, flushed to zero)

38



Interrupt Stacking

• When get an interrupt, push the FP regs on the stack

too

• Can do “lazy stacking”, only saves FP regs if you are

using the FPU

• How can you tell? FPCA (floating point context address

register) can set bit when you do a FPU instruction

• Interrupt handler will save S0 .. S15 and FPSCR (status

and control) on stack for you
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VFP Instructions – Load and Store

• VLDR.F32 Sd,[Rn]

• VLDR.F64 Dd,[Rn]

• VSTR – store

• VLDM – load multiple

• VSTM – store multiple

• VPUSH – push

• VPOP – pop

• VMOV – move immediate or SP/DP, also R

40



VFP Instructions – Math

• VADD.F32

• VSUB

• VDIV

• VMUL

• VNEG

• VABS – absolute value

• VSQR – square root
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VFP Instructions – Multiply/Add

• Can multiply then add in one instruction

• Regular multiply/add

◦ VMLA – multiply add

◦ VMLS – multiply subtract

• Fused multiply/add, does not round in between

◦ VFMA – multiply add

◦ VFMS – multiply subtract
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VFP Instructions – Conversion

• VCVT convert between single double, or fp to integer

• Can specify rounding method (or use default)
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VFP Instructions – Compare

• VCMP – compare

• note goes to FP cmp register, need MVRS to move to

integer flags registers before you can use BEQ or similar
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Vector Instructions

• Some modern processors have more advanced vector

operations

• Neon on 32-bit ARM

• MMX/SSE/AVX on x86

• Can have 128-bit (or larger) register, hold 4 32-bit values

for example

• Then one vector add can add all 4 in parallel, in theory

4 times faster than regular loop with floating point one

by one
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• Lots of complex stuff

• GPUs (graphics cards) are also good and doing floating

point math in parallel like this
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