ECE 271 — Microcomputer

Architecture and Applications
Lecture 20

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

5 April 2022


http://web.eece.maine.edu/~vweaver

Announcements

e Read Chapter 12.1, 12.4
e Midterm next Tuesday, review in class Thursday



Floating Point / Fixed Point

e We have been working with integers, signed and
unsigned.

e How can you represent fractional numbers?

e How does it work in base 107
123456 = 1 x 10° +2 x 10° 4+ 3 x 10" + 4 x 10" + 5 X
1071 +6 x 1072

e You can do the same thing in binary (base2)
1010.10 = 1x234+0x224+1x2'4+0x2°+1x 271 40x 272
This is 10.5 in decimal

-y )



e You can do this for arbitrary bases.

You have to keep track of the decimal or “radix’ point
handled



Fixed Point

e Fix the decimal point somewhere inside the number

e In decimal, note that 123.45 + 12.51 is the same as
1234541251, just you move the decimal point.

e S0 we can have fractional parts of integers by just moving
the decimal point.



Fixed Point — Notation

e UQm.n = Unsigned fixed point, m bits to left of point,
n bits to right

e Qm.n = Signed fixed point, m bits to left (one is sign
bit) n bits to right



Fixed Point — Size

e [radeoff in m vs n values

e Accuracy — how close it is to the number you are trying
to represent

e Resolution — the smallest change that will give you
another value



Fixed Point — UQ16.16

e Q16.16 — 16 bits of integer, 16 bits of fraction

e Use regular integer register and regular math

e Limited range, you now have smallest max value you can
have

e Also need to track the radix point yourself

e Binary example

e 101.111 =5 4 0.25 4 0.125 = 5.375



Fixed Point — Q16.16

e Two's complement sighed

e Note: TI-Style Q notation sign bit isn't counted: Q15.16

e AMD variant sign bit is: Q16.16

o -4.25, first do 4.25 0100 0100, twos complement whole
thing 1011 1100



Addition

e Straightforward. Make sure Q for both is the same and
just add as normal

e 0101.1 4+ 0101.1 = 1011.0



e Just like addition

Subtraction

10



Multiplication

e Think about decimal. 10.1 * 2.0 = 20.2
but how do you do It

11



Then you shift the point left by the number to
20.2

e What you are doing is 101 x 10~ times 20 x 10~ so
you can do the first, then do the second
e Regular multiply
e Need to adjust radix point back
e Example, 2.5 * 2.5
o 0010.1 * 0010.1 = 0000 0000 0000 0010 1000 0000
0000 0000
o 0x28000*0x28000 = x6 4000 0000 Q16.16*Q16.16 =
Q32.32

-y 12



o Need to shift right by 16 (>> 16) to get final result
= 0x6 4000 = 6.25

/Y 13



Multiplication — Assembly Language

o A 32x32 multiply gives a 64-bit result

e How does this work on 32-bit processor?

e ARM MUL (multiply) instruction only updates the lower
32-bits of result

e ARM has special SMULL /UMULL instructions that take
two 32-bit destinations so you can get the whole result

e To convert the result of a 16.16 multiply back from
32.32 you need to combine the bottom 16 bits of the
top with the top 16 bits of the bottom

-y 14



e You can do that with two shifts and an OR

15



Division
e Similar to multiply

e 0x28000 / 0x28000 = 1 Q16.16 / Q16.16 = Q1. <<
16
What happens to fraction part?
Shift dividend by << 16 first before divide to not lose a
lot of precision

-y 16



Converting to int

e Just shift right by Q to truncate

e Rounding is straightforward, add one if the first fraction
bit is 1 (meaning the fraction is 0.5 or higher)

e Easy to do because shifts will put the last shifted off bit
In the carry.

-y 17



e Can be a problem

Overflow

18



Why ARM is good at fixed point

e barrel-shift instructions

19



Can you exactly represent all numbers?

e In decimal, 1/37 No

e In binary, only combinations of powers of 2. So even
things like 1/5 (0.2) you can't represent exactly.

e Irrational numbers like Pi?

/Y 20



Arbitrary Precision Number Libraries

e If you need *exact™® values
e Tend to be slow and use lots of RAM, but give exact
results

/Y 21



Fixed Point Limited Range

e \What if you want to operate on numbers with different
Q values
e What if you want to add very large or very small numbers

-y 22



Fixed Point Benefits

e Can be faster than floating point

e Uses existing integer registers / ALU

e Works on machines without floating-point unit

e For certain ranges of numbers can have better accuracy
(no bits are wasted on exponent)

/Y 23



Floating Point Drawbacks

e special hardware

e power hungry, if not commonly used

e chip area, expense

e back in day, special chip

e rounding issues

e money calcs. 1/10 only approximate. .0001100110011
e trouble near zero

-y 24



Floating Point on Cortex-M4

e Optional on Cortex-M. Our boards do have it though.
e Thirty-two 32-bit (float) registers SO to S31
e Four special registers

o CPACR — coprocessor access control reg

o FPCCR — floating point context control

o FPCAR - floating point context address

o FPSCR — floating-point status and control

-y 25



Double Precision?

e The S registers can also be read as sixteen 64-bit registers
DO to D15. DO contains SO and S1, D1 contains S2 and
S3

e You can't do 64-bit (double) math on the Cortex-M4 in
hardware

e The C compiler will emulate in software behind your

back



FPU - ABI Differences

e When passing fp arguments put them in the registers.
e Up to 16 32-bit or 8 64-bit can be passed

e If you mix and match S/D then it gets complicated

e What if you want to pass more? Goes on the stack

e If result is fp return in S0/DO

-y 27



IEEE 754 Standard

28



Enabling Floating Point

e The FPU is disabled by default

e Have to enable CP10 and CP11 (CP10 is single, CP11
double)

e Need to use memory barriers

e Note this is Cortex-M4 specific, it's slightly different on
other ARM processors

; Enable FPU (from Cortex-M4 Technical Reference, 7-1)
; CPACR is located at address OxEOOOEDS88

LDR.W RO, =0xEOOOEDS88

; Read CPACR

LDR R1, [RO]

; Set bits 20-23 to enable CP10 and CP11 coprocessors

/Y 29



ORR R1, R1, #(0xF << 20)

; Write back the modified value to the CPACR

STR R1, [RO]

; wait for store to complete / reset pipeline (necessary?)
DSB

ISB

30



Why enable Floating Point?

e First, why disable? Can use power

e Enable it if you want to use FP

e Any downsides to using FP?

e One is that if you have an operating system and context
switching it's more registers you have to save/restore

e Some code intentionally won't use it (Linux kernel for
example, by default can't use FP in kernel. What to use
instead? Fixed point often, milicelsius)

-y 31



Any use of FPU if not doing math?

e memcpy() is a highly optimized routine

e Why not just sorci-o;i<t000;1++)atii=bri1;

e Byte-by-byte is OK

e What if we copied integers (32-bit) instead? Would it
be 4 times faster?

e Yes, but watch out for corner cases (i.e. starting/ending
not on an aligned 4-byte boundary)

e Could we make it even faster? ARM FP allows
loading/storing 64-bit doubles, 8 bytes at a time

-y 3



e There's even load/store multiple on ARM so can copy

bigger chunks
e Why do you want fast memcpy? Lots of reasons.
a bit about 2D game programming for one.

alk

33



Floating Point Status and Control Register

(FPSCR)

e Has the N/Z/C/V bits set by the VCMP instructions
Integer instructions cannot use these, have to cop it to
the APSR using the VMRS instruction first

e Has control bits
o Alt half-precision

O

O

O

Default NaN
~lush-to-zero

Rounding mode

34



e Has exception bits

O

O

O

nput Denormal
nexact Cumulative

Underflow Cumulative

o Overflow Cumulative

o Division by Zero cumulative

o Invalid Operation cumulative

35



Rounding Modes

e 00 Round to nearest (default)
e 01 Round to +infinity

e 10 Round to -infinity

e 11 Round to zero




Non-standard Modes

e Also supports some modes not in IEEE 754
o Flush-to-zero (subnormals go to 0)
o Default NaN
o Alternative half-precision mode (16-bits, can get extra
precision vs |[EEE by not allowing infinity or NAN but
gaining a bit)

-y 37



Exceptions / Interrupts

e Underflow/Overflow — when number is too small/big to
represent

e Inexact exception — result lies between two floating point
numbers, had to be rounded

e Invalid operation — things like 0 times infinity, infinity -
infinity, sqrt(-1)

e Divide-by-zero

e Denormal (value to small, flushed to zero)

/Y 38



Interrupt Stacking

e When get an interrupt, push the FP regs on the stack
too

e Can do “lazy stacking”, only saves FP regs if you are
using the FPU

e How can you tell? FPCA (floating point context address
register) can set bit when you do a FPU instruction

e Interrupt handler will save SO .. S15 and FPSCR (status
and control) on stack for you

/Y 39



VFP Instructions — Load and Store

VLDR.F32 Sd, [Rn]

VLDR.F64 Dd, [Rn]

vste — Store

o — load multiple

vstu — Store multiple

VPUSH — pUSh

veor — POP

wov — move immediate or SP/DP, also R

40



VFP Instructions — Math

VADD.F32
VSUB
VDIV
VMUL

VNEG
mss — absolute value
vsqp — Square root

41



VFP Instructions — Multiply/Add

e Can multiply then add in one instruction
e Regular multiply/add
O vMLa — multip Yy add

o ws — multiply subtract

e Fused multiply/add, does not round in between
o vwu — Multiply add
o wvws — multiply subtract

-y 42



VFP Instructions — Conversion

e ««r convert between single double, or fp to integer
e Can specify rounding method (or use default)

43



VFP Instructions — Compare

® vorr — COMPpPaAre
e note goes to FP cmp register, need MVRS to move to
integer flags registers before you can use BEQ or similar

-y ”



Vector Instructions

e Some modern processors have more advanced vector
operations

e Neon on 32-bit ARM

e MMX/SSE/AVX on x86

e Can have 128-bit (or larger) register, hold 4 32-bit values
for example

e [hen one vector add can add all 4 in parallel, in theory
4 times faster than regular loop with floating point one
by one

-y =



e | ots of complex stuff
e GPUs (graphics cards) are also good and doing floating
point math in parallel like this

VA A 4 16



