
ECE 271 – Microcomputer
Architecture and Applications

Lecture 21

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

7 April 2022

http://web.eece.maine.edu/~vweaver


Announcements

• Read Chapter 20

• Midterm Tuesday the 12th

• Course website (including gitlab) will be down for

maintenance Friday - Monday

• Office Hours will be cancelled April 18th and 20th due

to faculty interview presentations. If you need to meet

that week let me know and I can arrange alternate times

• The Student Symposium is April 15th, consider going

1



Midterm Review

• Shorter than last time.

No assembly language

There will be a take-home section (floating point)

• C programming

◦ Be sure you know how to set/clear bits in a register

• Interrupts

◦ Vectored interrupts – there is a table low in memory

(the interrupt vector) which has a lookup table of

pointers. When an interrupt happens, the CPU looks

2



up the address from the appropriate pointer and jumps

to it

◦ Interrupt handlers on Cortex-M are just normal

functions (the CPU does “stacking”, saving some

registers on the stack automatically for you. A magic

value is put in the Link register so the CPU knows you

are returning from a handler).

◦ Once an interrupt happens, you enter the handler.

Often you will need to ACK (acknowledge) the

interrupt so the CPU knows you are done handling

it. How this happens can vary with what hardware you

3



use (it’s often clearing a bit, but somehow it happens

automatically).

◦ Enabling an interrupt is multiple steps. You have

to enable it in the device (For example, in the timer

registers). Then you have to tell the NVIC (interrupt

controller) to enable it. Then you have to enable it on

the CPU globally with asm("CPIE i"). Finally you

have to enable whatever hardware will be triggering

the interrupt.

◦ Some devices (such as TIM4) can have multiple causes

that trigger the same interrupt (i.e., overflow and

4



capture). You can figure out which one was the

cause by checking certain bits to see the source of the

interrupt.

• Timers

◦ Lots of registers to set.

◦ Set what clock source to use system wide.

◦ You can then use the prescalar to divide the frequency

down.

◦ You can set to count up (from 0 to the ARR register

value), count down (from ARR to 0) or center count

(count up and down).

5



• PWM

◦ pulse width modulation: you set a CCR value that

when the counter gets bigger it triggers an output to

go high. This way you can generate a regular pulse

with an overall frequency based on ARR and a duty

cycle based on CCR.

• Input Capture

◦ You can use the Timer to measure the length of signals.

◦ When the incoming signal has a transition (high to low

or low to high) the timer will grab the current timer

count and store it in a register. (optionally also an

6



interrupt can be triggered).

◦ By saving the previous value, and subtracting from the

current value, you can calculate how many clock ticks

have happened

◦ If your signal is wider than the maximum value of the

counter, an overflow can happen. In order to measure

signals that long you can catch the overflows and count

them, and then add that time in to the measured time.

• Fixed/Floating Point: there will be a take-home question

where you will convert a decimal value to IEEE-574

floating point and back.

7



◦ Be aware of purpose of floating point

◦ Be aware of the layout of floating point (sign,

exponent, fraction)

8



Analog/Digital Converters (ADC)

• Take an analog signal, quantize it to a set of digital

values

• Compare against a reference voltage (result integer is a

fraction of the total reference voltage)

9



ADC Key Terms

• Sampling rate (how many conversions per second). Can

be millions or more.

• Number of bits in ADC (resolution)

◦ Varies between 6 to 24 bits usually. 12 or 24 bits

common.

◦ This is how many steps (voltages) can be represented

• Power dissipation – how much power used for conversion.

10



Have you ever used an ADC?

• Any time you are trying to get analog data into a

computer

• Microphone

• Temperature sensor

• Resistive touch screens

• Battery Level

11



Many, Many types of converters (textbook)

• Sigma-delta (low-speed)

◦ low-sampling rate but high resolution (100 k-samples

12-24 bits) which is fine for things like audio

• Successive-approximation (SAR) (low-power)

◦ Low-power and moderate sampling rate, 5 million

samples/s

• Pipelined (high-speed)

◦ oscilloscopes, HDTV, radar, needing grater than

5MSPS

12



More types of converters (Wikipedia)

• Direct conversion

◦ Parallel: Just an array of 2N comparators. Fast, but

need a lot (256 for 8 bit)

◦ Counter: count up and stop when gets to it

◦ Servo-tracking: if too high, count down, if too low,

count up, until it matches

• Integrating

• Apple II

◦ RC circuit controls 555 timer. Count how long it takes

13



for it to trigger.

14



SAR ADCs (as used on our boards)

• Uses binary search

• Internal DAC (opposite of ADC) set to 1/2 Vref,

compares it with Vin

• If Vin is larger, sets MSB (high bit), otherwise 0

• Next it tries either 3/4Vref or 1/4 Vref, does comparison

• Repeats, for each N bits

• Tradeoff between resolution and time

15



Sampling and Hold Amplifier (SHA)

• Can our signal change while we’re trying to measure it?

• Uses a capacitor to grab the voltage and hold it while

the ADC happens

• Capacitor takes a while to charge, need to wait

VC(t) = Vin × (1− e−fractTC)

• Wait until the sampling time

16



ADC Sampling Error

• Difference from ideal result

17



STM32L Hardware implementation

• STM32 board uses SAR with SHA

• Always uses HSI clock no matter the board is using (can

use 1, 2, or 4 divider in SMP register)

• Time to convert is sample time + channel conversion

time.

18



STM32L4 Hardware implementation

• Three ADC modules: ADC1, ADC2, ADC3

• ADC1 and ADC2 can run in dual mode (both run at

same time)

• Can be 12, 10, 8, or 6 bits

• 16 bits via “over-sampling” (measuring many times then

averaging?)

• Provide Vref- and Vref+ externally, internal reference

3.0V

• Clock rate is independent of processor clock

19



• With 80MHz clock at 12 bits can get 5.33 million

samples/second

• Can have a watchdog AWD which watches and if voltage

goes above or below certain value, trigger interrupt

(why?)

20



ADC conversion modes

• One input channel

◦ Start conversion

◦ ADC DR holds result

◦ EOC end of conversion flag set

◦ Optionally generate interrupt

◦ regular vs injected?

◦ can be put into continuous mode

• Multiple input channels

◦ Round robin switch between channels

21



Data Alignment

• Can be aligned in various ways

◦ Right aligned, with zeros on left

◦ Left aligned, with zeros to right. Note: 6-bit results

are aligned within the byte

• Sign extended if injected channel?

22



ADC Input Channels

• Various GPIO pins can be hooked in

• Single-ended or differential

◦ Single ended compares signal against ground

◦ Differential takes two input pins and compares the

difference

23



Triggering

• Can trigger with software ADSTART

• External trigger

◦ Timer outputs

◦ External pins

• Should set delay so doesn’t retrigger so quickly

24



Other ADC topics

• Conversion sequence (switching between channels

automatically)

• DMA

• Internal reference voltages

• Injected channels (you can have a setup where it regularly

samples each channel in turn, but an injected one

happens on demand and takes precedence.

25



Lab #10 – Setup ADC

• 12-bit ADC, single ended

• ADV Result =
Vinput
VREF

∗ 4096
• Vinput =

ADCResult
4096 ∗ VREF

• Will use pin PA1 connected to ADC12 IN6

26



Lab #10 – Measurement

• First will test by measuring the voltage from a

potentiometer voltage divider

• Second we will measure the result from an Infrared LED

transmitter/receiver pair

• The voltage on the photo-transistor (IR receiver) will

be proportional to the incoming IR light. Roughly

proportional to the distance of an object reflecting the

transmitter.

27


