
ECE 435 – Network Engineering
Lecture 5

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

31 January 2025

https://web.eece.maine.edu/~vweaver


Announcements

• HW#1 was due.

• HW#2 will be posted. Write a mini-webserver.

1



Web-servers

• famously netcraft had a list (meme netcraft reports BSD

is dying)

• NCSA was first popular one

• Apache (“a patchy” version of NCSA) took over

• Microsoft IIS

• Other companies like Sun/Netscape/SGI

• nginx (“engine-x”)

Designed to be faster than apache (Apache has lots of

RAM overhead)

2



Solve c10k problem (having 10k concurrent socket

connections at once)

Now there’s the c10M problem

• lighthttpd (“lightly”)

3



simple web server

• Listen on port 80

• Accept a TCP connection

• Get name of file requested

• Read file from disk

• Return to client

• Release TCP connection

• How do we make this faster?

◦ Cache things so not limited by disk

(also cache in browser so not limited by network)

4



◦ Make server multithreaded

5



http

• HyperText Transfer Protocol

RFC 2068 (1997), RFC 2616 (1999), RFC 7230 (2016)

• Make ASCII request, get a MIME-like response

• Connect with TCP socket

• Plain text request, followed by text headers

• Expects carriage returns in addition to linefeeds

• Influences from e-mail servers

6



http Commands

• GET filename HTTP/1.1

get file

• HEAD

get header (can check timestamp. why? see if cache up

to date)

• PUT

send a file

• POST

append to a file (send form data)

7



• DELETE

remove file (not used much)

• TRACE

debugging

• CONNECT, OPTIONS

8



http three digit status codes

• 1xx – informational – not used much

• 2xx – Success – 200 = page is OK

• 3xx – Redirect – 303 = page moved

• 4xx – Client Error – 403 = forbidden, 404 = not found

• 5xx – Server Error – 500 = internal, 503 = try again

9



Example http request from browser

GET / HTTP/1.1

Host: 471-pi3:8080

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/109.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Upgrade-Insecure-Requests: 1

10



Selected http request headers (included
after GET)

• Host: server you are requesting

Can configure browser to open up helper util for this (for

example, run Office if it’s a word file)

• User-Agent (browser info). Can you lie? Can you leak

info?

• Accept-*: type of documents can accept, compression,

character set

• Authorization: if you need special permissions/login

11



• Referer [sic] URL that referred to here

• Cookie: deals with cookies

Statelessness – how do you remember setting, logins,

shopping cart, etc. “cookies”. Expire. Can be misused.

• If-Modified-Since – caching

12



Example http response

HTTP/1.1 200 OK\r\n

Date: Fri, 26 Jan 2024 04:56:25 GMT\r\n

Server: ECE435\r\n

Last-Modified: Sun, 26 Mar 2017 04:31:47 GMT\r\n

Content-Length: 64\r\n

Content-Type: text/html\r\n

\r\n

<html><head><title>Test</title></head>

<body>test</body></html>

13



Selected http response headers

• Content-Encoding,Language,Length,Type

• Last-Modified: helps with caching

• Location: used when redirecting

• Accept-Ranges: partial downloads (downloading a large

file, interrupted, can restart where left off)

• Content-Length: length of file being sent

• Content-Type: type of data

• Date: current date

• Server: Name of webserver (should you report this?)

14



HW#2

• Can use existing server code, will connect to it with any

web-browser

• Listen on port 8080 (why not 80?)

• Once browser connects, read entire request into buffer

(more proper way to dynamically allocate memory?)

• Ignore most of the headers, mostly want to parse the

GET request

• Generate headers for response

• Send header and file back to browser over socket

15



• Handle a few corner cases, like 404 errors

16



HW#2 Hints

• Get the header printing first, then worry about

correctness of headers (dates, length))

17



HW#2 – Parsing for filename

• Know how to search for a string and point to location

after it?

◦ Find a string and point to beginning of it.
char *pointer;

pointer=strstr(haystack ,needle );

◦ Look for "GET "

Actually points to beginning of GET. How to skip

ahead?

◦ pointer+=4 is one way. (pointer math, ugh)

◦ How to get to first space?

18



◦ strtok(pointer," ");

Will split the string into chunks, put 0 at end.

◦ Also can do this manually;
pointer2=pointer;

while (* pointer) {

if (pointer ==’ ’) {

*pointer =0;

break;

}

pointer ++;

}

printf("%s\n",pointer2 );

19



HW#2 – Constructing the Headers

• Know how to construct a string on the fly? strcat(),

sprintf()

strcpy() first bit in.

strcat() additional strings.

If you want formatting you can do things like
sprintf(temp_string ,"File size=%d\r\n",filesize );

strcat(out_string ,temp_string );

Create big enough buffer.

20



HW#2 – Calculating Content-length

• How to find size of a file?

• Can read it in, and count. Note: don’t use strlen() for

this as a binary file might have zeros in it

• Might be better to use stat() (man stat.2) need .2

(or man -a) as there’s a command line tool called stat

that comes ip first.

21



HW#2 – Reading/Writing File

• How to read/write file. There are a large number of

ways to do this. open()/read()/write()/close

fopen()/fread/fwrite/fclose (careful! Buffered!

And maybe need fdopen() to print to file descriptor).
fd=open(filename ,O_RDONLY );

if (fd <0) fprintf(stderr ,"Error opening %s\n",filename );

while (1) {

result=read(fd ,buffer ,256);

if (result <=0) break;

write(network_fd ,buffer ,result );

}

Be sure to close afterward.

22



HW#2 – Getting Filetype

• Easiest way is calculating based on extension

• Take filename, look for . and compare after it

• Can use strstr() again, but think of corner cases

What if multiple dots? What if no dots?

23



HW#2 – To Be Continued

There will be some further notes on HW#2 code next

lecture

24


