
ECE 435 – Network Engineering
Lecture 6

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

3 February 2025

https://web.eece.maine.edu/~vweaver


Announcements

• HW#2 was posted. Write a mini-webserver.

1



HW#1 Review – Notes

• Aside, why port 31337? (LEET speak)

https://en.wikipedia.org/wiki/Leet

• Don’t ignore compiler warnings.

What if toupper() not found?

manpage. Need to include ctype.h

• Make sure your code doesn’t segfault

• Comment your code!

2

https://en.wikipedia.org/wiki/Leet


HW#1 Review – Writing Data

• With write syscall, need to set the size to send back.

• If you always send size of BUFFER even if not full, it

sends lots of useless zeros.

• You can use strlen() to get size of string (don’t use

sizeof())

• Also if you got the data with a read() call, the return

value of that is how many bytes that were read into the

BUFFER.

3



HW#1 Review – Specifications

• When you type “bye” it would exit both sides.

(bye by itself? cr/lf? byet?

• Postel’s Law: strict what send, generous receive?

• Example of browser accepting herf instead of href? why

could this be bad?

4



HW#1 Review – Something Cool

• Command line arguments

◦ Don’t interfere with default behavior (unexpected)

◦ Is good to print expected command lines if there’s an

error, or have a help option

◦ Can you just document it in the README? Sadly

people don’t always read documentation?

• Printing port/address

◦ Biggest issue is forgetting to use htons() on the port

and htonl() on address

5



◦ This might not be obvious if you don’t know what

the port/address should look like (netstat or ss can

help)

6



HW#1 Review – Questions

• OSI reference model – was hoping for names not number

◦ Routing packets – network layer (3?)

◦ Bits and voltages – physical layer (1?)

Not hardware layer

7



Homework #2 Notes – Connecting

• If connecting on same machine, can use localhost

if over network, must use IP address.

• Can find this various ways (ip addr on Linux)

• Be aware depending on how your network is set up

(firewalls, if behind NAT, etc) you might not be able to

connect to your test machine remotely

8



Homework #2 Notes – Common Issues

• If browser confused, be sure you aren’t sending extra

zeros. strlen() is your friend

• If browser gets some data but then just spins waiting, be

sure your Content-length field is set with the proper size

Note it’s the size of file you are sending, does not include

header size.

9



Homework #2 Notes – Debugging

• A powerful tool is using

wget -S localhost:8080/test.html

which will show you the headers your server is sending

and download the file so you can verify the contents.

Note you might need to install the wget tool (easy to

do on Linux, maybe more difficult elsewhere)

• The strace tool can also be useful as it can show you

the bytes being sent by the various syscalls

• If getting segfaults, you might be stuck using gdb

10



HW#2 Hints – Reading Request

• First be sure you are getting the incoming header. Print

it or use strace to verify.

• Some web-browsers might send really big requests, be

sure getting it all

◦ Use big enough buffer? 4096 bytes? How big?

◦ How would a “proper” server do this?

malloc(), realloc() if not big enough?

Overkill for this homework. You can try this, but only if

you know what you are doing. Goal of this assignment

11



is a simple server not perfect server.

◦ Just use a bigger buffer if necessary and error if you

get bigger, don’t waste time chasing pointers/segfaults

12



HW#2 Hints – Parsing the Request

• Search for a string and point to location after it?

◦ Find a string and point to beginning of it.
char *pointer;

pointer=strstr(haystack ,needle );

◦ Look for "GET "

Actually points to beginning of GET. How to skip

ahead?

◦ pointer+=4 is one way. (pointer math, ugh)

◦ How to get to first space?

◦ strtok(pointer," ");

13



Will split the string into chunks, put 0 at end.

◦ Also can do this manually;
pointer2=pointer;

while (* pointer) {

if (pointer ==’ ’) {

*pointer =0;

break;

}

pointer ++;

}

printf("%s\n",pointer2 );

• Be sure to strip off initial /, and if it’s just / return

index.html

• Do you need to handle spaces in the filename?

Thankfully no, URLs can’t have spaces

14



HW#2 Hints – Generating Response
Headers

• Print to stdout to verify what sending, also can use lynx

/ wget.

• Know how to construct a string on the fly?

◦ One way is to have empty string, than use strcpy()

first bit in. strcat() additional strings.

◦ Easier might be sprintf() If you want formatting

you can do things like
sprintf(temp_string ,"File size=%d\r\n",filesize );

strcat(out_string ,temp_string );

15



◦ snprintf() might be a bit safer as you can specify

the max length of the string (to avoid overflowing)

◦ Try not to be too fancy with one gigantic sprintf()

call as C can evaluate function parameters in arbitrary

orders

16



HW#2 Hints – General C annoyances

• When you use a char pointer to point into a string (as

when using strstr() or strtok() remember what you

have is a pointer, not a copy of the string you’re pointing

to. So if the buffer gets freed or re-used your pointer

may suddenly point to something different.

17



HW#2 Hints – Getting Size of File

• Can read it in, and count.

• Or can use the stat (man stat.2)

need .2 (or man -a) as there’s a command line tool

called stat that comes up first.

#include <sys/stat.h>

struct stat statbuf;

/* use stat() if have filename , fstat() if have file descriptor */

result=fstat(input_fd ,& statbuf );

input_size=statbuf.st_size;

18



HW#2 Hints – Sending File Contents

• Reading file into buffer then writing to socket

◦ I don’t recommend this as you have to dynamically

handle different file sizes

◦ If you do this, don’t use sprintf() with %s to print the

contents. Won’t work if 0 in file

• Reading/Writing in chunks

◦ open()/read()/write()/close
fd=open(filename ,O_RDONLY );

if (fd <0) fprintf(stderr ,"Error opening %s\n",filename );

while (1) {

result=read(fd ,buffer ,256);

19



if (result <=0) break;

write(network_fd ,buffer ,result );

}

◦ fopen()/fread/fwrite/fclose (careful! Buffered!

And maybe need fdopen() to print to file descriptor).

• Be sure to close afterward.

20



HW#2 Notes – Knowing Request is Done
(part1)

• This probably isn’t needed for this assignment, but can

be useful if you re-use code for your project

• When reading in data from a socket, you probably want

to read in the entirety of a request even though it might

be split across multiple reads (so read() in a while(1)

loop)

• You might also want to read all you can and then have

your client or server handle the request. However if

21



the last read() call blocks forever waiting then your

program is stuck waiting and can’t accomplish anything

else

• Is there a way to have interactive programs that are also

waiting for socket data?

22



HW#2 Notes – Knowing Request is Done
(part2)

• Can you just assume each read() matches an exact

write() from the cient?

◦ No: TCP is a byte stream, you can’t see packet

boundaries and they might not correspond to the

write() calls on the other side anyway

• Can you infer that there’s more data based on the

content being sent?

◦ Yes, for example if the data read ends in a new-line it

23



could mean the transaction is done

◦ Your protocol can contain info that lets you know how

long things are (content-length), or have a signal (like

the empty newline in http after headers) that let you

know

• Can you have non-blocking read() calls?

◦ You can set the fd to be non-blocking

◦ The recv() call (unlike read() has some extra flags

that can help. On Linux can pass MSG DONTWAIT

which will not-block and just return an error if no data

is available

24



◦ Note in these cases you have to periodically poll the

socket to check for input which might not be optimal

◦ You can use poll() or select() to be notified when

a fd has data but that’s complex

◦ You can also possibly set up multiple threads with

pthreads or similar, with one thread handling the socket

I/O

25



http 1.0

• RFC 1945 (1996)

• Single request / single response

• Each file/image requested was separate TCP connection

26



HTTP 1.1

• RFC 2068 (1997), RFC 2616 (1999)

• Introduced “Host” header to allow multiple web servers

on same IP address

• Supports persistent connections, allowing multiple

requests to happen with one TCP connection (lowering

overhead).

• How do you know when to close? (timeout after 60s?)

• For improved performance, can you open multiple

simultaneous connections? Common trick, but polite

27



to keep number low (less than 5?) instead? Yes, but

frowned upon (server/network load)

28



HTTP/2

• 2015. RFC 7540 / 8740 / 9113

• https://http2.github.io/faq/

• Google push through, extension of their SPDY (speedy)

Microsoft and Facebook giving feedback

• Why does google care about (relatively) small increases

in web performance?

• Leaves a lot of high level things the same. Negotiate

what level to use.

29

https://http2.github.io/faq/


HTTP/2 decrease latency of rendering
pages

• compress headers

• Server can push data the browser didn’t request yet but

it knows it will need (like images, etc)

• pipeline requests

Send multiple requests without waiting for response

good on high-latency links (FIFO on 1.1, new makes it

asynchronous)

• multiplex multiple requests over one TCP connection

30



HTTP/2 Head of Line Blocking Problem

• line of packets held up by processing of first

• FIFO first requests

• waits until done until next, can’t run in parallel

• Can still have issues if TCP packet gets lost

31



HTTP/2 Other notes

• Page load time 10-50% faster

• While can use w/o encryption, most browsers say will

only do with encryption

• Criticism: was rushed through. Is way complex. Does

own flow control (has own TCP inside of TCP) Re-

implements transport layer at application layer

• Can check if your web-browser implements HTTP by

going to https://http2.golang.org/

32

https://http2.golang.org/


HTTP/2 Support

• Most browsers support it

• Wikipedia says in July 2023 36% of top websites using

it

• Apache, nginx, lighthttpd, many other servers all support

it

33



HTTP/3 or H3

• Standardized by RFC 9000 (QUIC) and 9114 (HTTP/3)

• As of 2024 supported by most web-browsers, 31% Top

server

• Web-servers, supported by IIS and nginx, no Apache

support yet (many use Litespeed which is proprietary

but has apache compatible config)

• https://blog.apnic.net/2023/09/25/why-http-3-is-eating-the-world/

34

https://blog.apnic.net/2023/09/25/why-http-3-is-eating-the-world/


HTTP/3 and QUIC

• QUIC – runs sort of custom network congestion protocol

in userspace over top of UDP

• HTTP/3 started as HTTP/2 over QUIC but has

developed more

• QUIC is almost more of a TCP replacement

• Interface is no longer a sockets interface

35



HTTP/3 other

• HTTPS only

• Can handle better roaming around switching IP addresses

w/o losing connection

• Also note it might not be possible to use self-signed

certificates so you can only use http3 if approved by an

authority

36



HTTP/3 Firefox issue 2022

• https://hacks.mozilla.org/2022/02/retrospective-and-technical-details-on-the-recent-firefox-outage/

• Firefox stopped responding worldwide because of a bug

in their HTTP/3 stack made their telemetry break a few

weeks ago

• The fact that they let the telemetry break the browser is

a whole other concerning tale

• But it turns out recent firefox has HTTP/3 set to

automatic, and will use it if found, and google has been

rolling out HTTP/3

37

https://hacks.mozilla.org/2022/02/retrospective-and-technical-details-on-the-recent-firefox-outage/


• Part of the bug is http headers are supposed to be

case-insensitive, and HTTP/2, HTTP/3 suggests they

should be all lowercase, which can break your parser if

you don’t expect it

• Postel’s Law in action?

38



Do you need a browser? (old)

telnet www.maine.edu 80

GET / HTTP/1.1

Host: www.maine.edu

(enter)(enter)

control-]

close

39



Do you need a browser? (https)

openssl s_client -connect www.maine.edu:443

GET / HTTP/1.1

Host: www.maine.edu

(enter)(enter)

40



Do you need a browser? (HTTP2)

openssl s_client -connect http2.akamai.com:443

GET / HTTP/1.1

Host: http2.akamai.com

Does not work.

See http://www.chmod777self.com/2013/07/http2-status-update.html

But need to first send a binary SETTINGS frame.

50 52 49 20 2a 20 48 54 54 50

2f 32 2e 30 0d 0a 0d 0a 53 4d

41

http://www.chmod777self.com/2013/07/http2-status-update.html


0d 0a 0d 0a 00 00 04 00 00 00

00 00

Then HEADERS frame, then compressed HEADERS.

Response is compressed HEADERS and DATA frames.

42



How simple can a server be?

• My Apple II webserver project

http://www.deater.net/weave/vmwprod/apple2_eth/

43

http://www.deater.net/weave/vmwprod/apple2_eth/


High-Level WWW Concerns

44



Compression

• Even with 1.1 could use deflate compression

• CRIME attack, could figure out encryption things by

seeing how well values compressed (?)

• Because of this http compression is usually disabled

• http2 HPACK special compression to be resistant

45



What if Server Overloaded?

• Slashdot effect (modern: HackerNews?)

Too many machines connecting at once, can crash or

cause DoS

• caching/proxy – squid

• Server farms / clusters

• Content Delivery Network

◦ akami, mirroring content at nearby ISP level instead

of one large server

◦ cloudflare, similar, also provide DoS mitigation

46



• What if active attack? Can you block things?

• Recently: AI causing DoS like attacks as they try to

scan entire internet for content

47



Web Security

• SSL – Secure Socket Layer

• Replaced by TLS (Transport Layer Security)

• Port 443 for https (we’ll talk about soon)

• Public key encryption.

48



Do you need Encryption?

• Big push for “https everywhere”

• For personal data, banking info, e-commerce, secret sites

• What if for harmless / regular sites?

One reason is to avoid man-in-the-middle attacks where

someone in between could insert HTML (ads, malware,

etc)

49



Https challenges

• Can be expensive to move to https

• Requires static IP, no multi-hosting?

• Need to buy certificate, can be expensive (though free

otions like “Let’s Encrypt”

• Certificates expire, from 2 years to 90 days and even

pushes to make it shorter! Huge hassle

50



Authentication

• How do you know the site you connect to is the one you

want?

• Little green padlock in corner

• https combines authentication with encryption

• self-signed certificates should be fine for non-critical

sites, but browsers make a fuss if you use them

51



Web Privacy

• Cookies

• Cross-device tracing

• Browser Fingerprinting

52



Setting Up a Web-server

• Apache

• Easy to do, more difficult to secure

53



Web Seach

• Web-bots index the web. robots.txt file

In 2025 huge challenge as AI bots scanning web for

content, often ignoring robots.txt

• Altavista, Hotbot, Excite, Inktomi, etc.

• Curated search like Yahoo (people organize links rather

than automatically search)

• Google (1996 some machine in Stanford, 1997-1998)

• MSN search 1999, rebranded Microsoft Bing 2009

54


