
ECE 435 – Network Engineering
Lecture 12

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

19 February 2025

https://web.eece.maine.edu/~vweaver

Announcements

• HW#4 was posted (e-mail, DNS)

1

HW#2 – Programming Notes

• Watch warnings, though I might be running newer

version of gcc

• Don’t use string operations on binary files

• If no file specified, index.html If no index.html send a

404 error

• ctime prints own linefeed

• If you report HTTP 1.1, don’t close connection after

file, there might be more requests and you might get

”connection reset”

2

• Be sure to check for unexpected errors – what if huge

URL is sent?

• Many crashed if I requested the README file. Have to

handle unexpected input from user. (in this case, no file

extension)

• Traditionally the biggest problem (if the browser refuses

to display) is the wrong Content-length:

If you send less data than you say you will, it will wait

forever for it, or else give a ”connection reset” if you

close the connection.

• Be sure you read everything the browser is sending

3

(Either big enough buffer, or repeat in loop reading it

all). If you send a response before it is done sending it

can confuse things. How can you hold an arbitrary size

header? malloc()? Do you want to?

• Be sure to drop the leading / in the file part of a URL

• If you use firefox you’ll see it might also request

favico.ico? Why? What should you return (assuming

the file doesn’t exist?) 404.

4

HW#2 – Why write web server in C?

• A pain to write in C.

• But... what language are most webservers written in?

Apache=C, nginx =C, lighttpd = C, litespeed = C

5

HW#2 – Questions

• browser

◦ Error 404 – not found

◦ Error 418 – RFC 2324 coffee protocol (I’m a teapot)

◦ Error 451 – Unavailable For Legal Reasons / Ray

Bradbury

• http header from www.maine.edu

◦ nginx/1.20.1

◦ Isn’t actually a website, just redirect to the https site

◦ Old days they ran Apache 2.2.2.

6

◦ Re-ran things this year and more complex so left last

year’s, for some reason now there’s a big chunk of

javascript

7

HW#2 – Something Cool

• I do appreciate the pages you made, even if I didn’t

comment specifically in the grades.

8

Finish up some DNS stuff from last time

9

How do you know what DNS server to use?

• Usually your ISP would tell you

• These days set up so DHCP will set it up for you

• Companies offer “easy to remember” ones you can use,

google 8.8.8.8 and cloudflare 1.1.1.1

10

Reverse DNS request

• Given IP address, how can you find the name?

• Linux can use the “host” command.

• For IPv4, there is special in-addr.arpa domain

• To look up 1.2.3.4, lookup 4.3.2.1.in-addr.arpa

• It will iterate down. This gets trickier now with non-

contiguous IP allocations.

• Similar thing for IPv6 using ip6.arpa

11

Zone Transfers

• Zone transfers – copying zone list between machines

12

Name Server Software

• Can you set up your own?

• BIND/named

• dig / nslookup tools

13

DNS Security – Amplification Attack

• Send requests to DNS server with spoofed return address

• UDP makes this easy

• Do this with enough servers, can be DDoS

14

DNS Security – DNSSEC

• RFC 3833

• Digitally sign response

• Can provide things like public keys

• Backwards compatible

• Slow uptake

• Article on DNSSEC https://www.potaroo.net/

ispcol/2024-05/dnssec-fin.html

15

https://www.potaroo.net/ispcol/2024-05/dnssec-fin.html
https://www.potaroo.net/ispcol/2024-05/dnssec-fin.html

DNSSEC Security – Crashing Attack

• https://www.theregister.com/2024/02/13/dnssec_

vulnerability_internet/

• 1/3 of DNS servers handle DNSSEC?

• Sending specially crafted encrypted data can take hours

to decode, essentially DOSing the DNS server

16

https://www.theregister.com/2024/02/13/dnssec_vulnerability_internet/
https://www.theregister.com/2024/02/13/dnssec_vulnerability_internet/

DNS Privacy

• Can people spy on your web-browsing through DNS?

• 1.1.1.1 and 8.8.8.8 name servers?

• Can a web-browser tunnel DNS over https?

17

https DNS Tunneling

• Some browsers want to tunnel DNS over https

• Bypass your ISP’s DNS servers and use ones from your

browser

• Is this more or less secure?

• Are there privacy implications?

• Why might your ISP/company not like this?

18

The Transport Layer

OSI TCP/IP

7 Application Application

6 Presentation

5 Session

4 Transport Transport

3 Network Internet

2 Data Link Host-to-network

1 Physical Host-to-network

19

The Transport Layer

• Responsible for reliable point-to-point data transport

independent of whatever lies beneath.

• Sender: receives data from application, breaks up to

“segments”, adds port number, goes to net layer

• Receiver: re-assembles “segments”, passes data to

application listening on port

• Provide process-to-process connectivity, and per-

segment error control and per-flow reliability, as well

as rate control

20

• Can be more reliable than underlying network

• Most common interface “socket” API from homeworks.

21

Some Transport Layer Protocols

• TCP (Transmission Control Protocol)

◦ connection oriented / stateful / per-flow reliability and

rate control

• UDP (User Datagram Protocol)

◦ stateless / connectionless

• SCTP (stream control transmission protocol)

◦ messages like UDP, reliable like TCP

• QUIC

◦ running reliable connection over UDP

22

The Transport Layer

• Terminology: application = process, data-transfer-unit

is a segment, traffic is a flow

• addressing – each process needs a unique ID. For

internet, this is the “port” number (16-bit)

• Rate control

– Flow control – between source and destination

– Congestion control – between source and network

None in link layer because only one hop?

23

Can be done by sender or network

• Real time requirements – things like video and audio

need extra info such as timestamp, loss rate, etc. So

hard to do with raw TCP/UDP

24

Unreliable, Connectionless – UDP

• User Datagram Protocol (RFC 768)

• Just an 8-byte header tacked onto the data packet

• No reliability, no rate control, stateless

If you want these things you have to add at higher layer

• Error control optional

• Why none of those things? All add overhead.

◦ Used when want packets to get through quickly.

◦ Don’t care about re-transmits, better for real-time

(VOIP, streaming?)

25

◦ Easy to implement, for low-level stuff like bootp/dhcp

◦ Good for broadcasting

• Provides process-to-process communication and per-

segment error control

• Can send UDP packets to a destination without having

to set up a connection first

26

UDP Header

2 bytes 2 bytes

Source Port Destination Port
Packet Length Checksum

• 16-bits: source port (optional, says where it is coming

from in case need to respond, 0 if unused)

• 16-bits: destination port

• 16-bits: length (in bytes, includes the header)

min: 8, max: 65,515 (<64k to fit in 64k IP packet)

• 16-bits checksum (optional, 0 if unused, see below)

• data follows

27

Port Number Review

• 16-bit, so 64k of them

• Can map to any you want, but there are certain well-

known ones. Look in /etc/services

For example. WWW is 80/tcp. DNS is 53/udp

• Most OSes, ports <1024 require root (why?)

• 1024 ... 49151 are registered IANA ports

• 49152 ... 65535 are ephemeral ports, dynamic for use by

any service

28

Uniquely identifying flow

• TCP/UDP on IPv4 represented by 104 bit socket pair

5-tuple

◦ Source/destination addr

◦ Source/destination port

◦ protocol ID (TCP or UDP)

• IPv6 in theory has a specific field for this

29

UDP checksum

• Find info on this in RFC768 and RFC1071

• If set to zero, ignored

• Receiver drops packet if invalid checksum

Does not request resend, does not notify sender

(yes, really, no error message if dropped)

30

UDP checksum Algorithm

• Ones-complement sum of all 16-bit words in header and

payload

• Padded with 0s to be multiple of 16-bits

• Also added to the checksum is the pseudo-header

(Layering Violation)

Enables receiver to catch problems (delivered to wrong

machine) – why could this be a problem?

◦ IPV4: a 96-bit pseudo header: source IP (2*16), dest

31

IP (2*16), protocol (padded to 16), length

◦ IPv6: 128-bit src IP, 128-bit dest IP, 32-bit UDP len,

24-bit 0, 8-bit next/type (17 UDP)

• The ones’ complement of checksum is put in checksum

field. That way when you checksum a valid packet the

result will be 0.

32

Ones’ Complement Refresher

• Positive numbers are same as always (with high bit 0)

• Negative numbers are represented by the inverse (bit

flipped) of positive. (no adding 1 (that’s twos’

complement)

• When adding, if there’s a carry, it is wrapped around

and added in to the low bit (“end-around carry”)

• Subtraction is a bit more complicated

• There are two zeros, 0x0000 and 0xffff

33

Checksum Corner Cases

• What happens if checksum is 0? Conflict with disabled

checksum? Entered as 0xffff, which in ones complement

is -0

• Checksum considered mandatory on IPv6 because IPv6

header not checksummed

• Why would you ever leave checksum out? Takes time to

compute, might care about latency over errors [video?]

34

UDP example Packet

0x0000: 8875 563d 2a80 0030 18ab 1c39 86dd 6002 .uV=*..0...9..‘.

0x0010: 2618 0031 1140 2610 0048 0100 08da 0230 &..1.@&..H.....0

0x0020: 18ff feab 1c39 2001 4860 4860 0000 00009..H‘H‘....

0x0030: 0000 0000 8844

UDP starts at 0x36:

e239 0035 0031 9c0e 8657D.9.5.1...W

0x0040: 0120 0001 0000 0000 0001 0377 7777 0465www.e

0x0050: 7370 6e03 636f 6d00 0001 0001 0000 2910 spn.com.......).

0x0060: 0000 0000 0000 00

35

UDP example Packet Decoded

• What is source port? What is destination port? Size?

• How can you tell what high-level protocol it is?

Can you make an educated guess from the ports?

36

UDP checksum example (from prev slide)

• 16-bit sum of “virtual header” (two IPv6 addresses,

protocol (0x0011) and length of udp packet/header

(0x0031)) is 0x2’9f8c

• 16-bit sum of UDP header leaving off checksum is 0xe29f

• 16-bit sum of UDP data is 0x2’e1c0

• Add them get 0x6’63eb

• It’s a 16-bit sum, so add 0x6 + 0x63eb = 0x63f1

ones complement is 0x9c0e, which matches the UDP

checksum field

37

UDP and the Operating System

• Server: user binds to UDP socket

• OS sets up queue

• Network stack decodes packet, notes that it is UDP

• Runs checksum, drops it if invalid

• Finds port, looks to see if any processes listening for it

• If so, adds to queue

• If not, sends an ICMP “port unreachable” error message

• All UDP messages to that port, no matter who sends

them, end up in the same queue.

38

Writing UDP sockets code

• Use SOCK DGRAM rather than SOCK STREAM

• Can skip the listen/accept state, as no connection is

there. Just receive the packets as they come in.

• Can’t read then write, as no connection. For the server

to write back to the client it needs to use recvfrom()

which also provides ip/port

• To send a packet use sendto()

39

UDP Socket – Client code
// setup socket

socket_fd = socket(AF_INET , SOCK_DGRAM , 0);

// get dest address/port

dest=gethostbyname(DEFAULT_HOSTNAME);

memset (&dest_addr ,0,sizeof(dest_addr));

dest_addr.sin_family=AF_INET;

memcpy(dest ->h_addr ,& dest_addr.sin_addr.s_addr ,dest ->h_length);

dest_addr.sin_port=htons(port);

sendto(socket_fd ,buffer ,strlen(buffer),0,

(struct sockaddr *)& dest_addr , dest_len);

40

UDP Socket – Server code

// setup socket

socket_fd = socket(AF_INET , SOCK_DGRAM , 0);

// wait for incoming connection

bind(socket_fd , (struct sockaddr *) &server_addr , sizeof(server_addr));

// read data from socket , including client_addr info

recvfrom(socket_fd ,buffer ,(BUFFER_SIZE -1),0,

(struct sockaddr *) &client_addr , &client_len);

// send reply

sendto(socket_fd ,buffer ,strlen(buffer),0,

(struct sockaddr *)& client_addr , client_len);

41

Common UDP Services

• Obsolete: echo/discard/users/daytime/quote/chargen

• Nameserver

• bootp/tftp

• ntp (network time protocol)

• Old versions of NFS

• snmp

42

UDP real-time

• Real-Time Protocol (RFC1889)

• On top of UDP, multiplexes

• data streams

• timestamps

43

