ECE 435 — Network Engineering
Lecture 12

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

19 February 2025


https://web.eece.maine.edu/~vweaver

Announcements

e HW+4 was posted (e-mail, DNS)



HW#2 — Programming Notes

e Watch warnings, though | might be running newer
version of gcc

e Don't use string operations on binary files

e If no file specified, index.html |If no index.html send a
404 error

e ctime prints own linefeed

o If you report HTTP 1.1, don't close connection after
file, there might be more requests and you might get
" connection reset”

-y )



e Be sure to check for unexpected errors — what if huge
URL is sent?

e Many crashed if | requested the README file. Have to
handle unexpected input from user. (in this case, no file
extension)

e Traditionally the biggest problem (if the browser refuses
to display) is the wrong Content-length:

If you send less data than you say you will, it will wait
forever for it, or else give a "connection reset’ if you
close the connection.

e Be sure you read everything the browser is sending

-y 3



(Either big enough buffer, or repeat in loop reading it
all). If you send a response before it is done sending it
can confuse things. How can you hold an arbitrary size
header? malloc()? Do you want to?

e Be sure to drop the leading / in the file part of a URL
o If you use firefox you'll see it might also request
favico.ico? Why? What should you return (assuming
the file doesn’t exist?) 404.




HW#2 — Why write web server in C?

e A pain to write in C.
e But... what language are most webservers written in?
Apache=C, nginx =C, lighttpd = C, litespeed = C



HW#2 — Questions

e browser
o Error 404 — not found
o Error 418 — RFC 2324 coffee protocol (I'm a teapot)
o Error 451 — Unavailable For Legal Reasons / Ray

Bradbury

e http header from www.maine.edu
o nginx/1.20.1
o Isn't actually a website, just redirect to the https site
o Old days they ran Apache 2.2.2.

-y 6



o Re-ran things this year and more complex so left last
year's, for some reason now there's a big chunk of
javascript



HW#2 — Something Cool

e | do appreciate the pages you made, even if | didn't
comment specifically in the grades.



Finish up some DNS stuff from last time



How do you know what DNS server to use?

e Usually your ISP would tell you
e These days set up so DHCP will set it up for you

e Companies offer “easy to remember”’ ones you can use,
google 8.8.8.8 and cloudflare 1.1.1.1

/Y 10



Reverse DNS request

e Given |IP address, how can you find the name?

e Linux can use the “host” command.

e For |IPv4, there is special in-addr.arpa domain

e o look up 1.2.3.4, lookup 4.3.2.1.in-addr.arpa

o It will iterate down. This gets trickier now with non-
contiguous |IP allocations.

e Similar thing for IPv6 using ip6.arpa

/Y 11



Zone Transfers

e /one transfers — copying zone list between machines

12



Name Server Software

e Can you set up your own?
e BIND /named
e dig / nslookup tools

13



DNS Security — Amplification Attack

e Send requests to DNS server with spoofed return address
e UDP makes this easy
e Do this with enough servers, can be DDoS

-y 14



DNS Security — DNSSEC

e RFC 3833

e Digitally sign response

e Can provide things like public keys

e Backwards compatible

e Slow uptake

e Article on DNSSEC https://www.potaroo.net/
ispcol/2024-05/dnssec-fin.html

-y 15


https://www.potaroo.net/ispcol/2024-05/dnssec-fin.html
https://www.potaroo.net/ispcol/2024-05/dnssec-fin.html

DNSSEC Security — Crashing Attack

e https://www.theregister.com/2024/02/13/dnssec_
vulnerability_internet/

e 1/3 of DNS servers handle DNSSEC?

e Sending specially crafted encrypted data can take hours
to decode, essentially DOSing the DNS server

/Y 16


https://www.theregister.com/2024/02/13/dnssec_vulnerability_internet/
https://www.theregister.com/2024/02/13/dnssec_vulnerability_internet/

DNS Privacy

e Can people spy on your web-browsing through DNS?
e 1.1.1.1 and 8.8.8.8 name servers?
e Can a web-browser tunnel DNS over https?

17



https DNS Tunneling

e Some browsers want to tunnel DNS over https

e Bypass your ISP’s DNS servers and use ones from your
browser

e Is this more or less secure?

e Are there privacy implications?

e Why might your ISP /company not like this?

/Y 18



The Transport Layer

OS| TCP/IP
7 | Application Application
6 | Presentation
5 Session
4 | Transport Transport
3 Network Internet
2 | Data Link | Host-to-network
1 Physical Host-to-network

19



The Transport Layer

e Responsible for reliable point-to-point data transport
independent of whatever lies beneath.

e Sender: receives data from application, breaks up to
“segments’, adds port number, goes to net layer

e Receiver: re-assembles “segments’, passes data to
application listening on port

e Provide process-to-process connectivity, and per-
segment error control and per-flow reliability, as well
as rate control

-y 20



e Can be more reliable than underlying network
e Most common interface “socket” APl from homeworks.

/Y 21



Some Transport Layer Protocols

e TCP (Transmission Control Protocol)
o connection oriented / stateful / per-flow reliability and
rate control
e UDP (User Datagram Protocol)
o stateless / connectionless
e SCTP (stream control transmission protocol)
o messages like UDP, reliable like TCP
e QUIC

o running reliable connection over UDP

/Y 22



The Transport Layer

e Terminology: application = process, data-transfer-unit
Is a segment, traffic is a flow

e addressing — each process needs a unique ID. For
internet, this is the “port” number (16-bit)
e Rate control

— Flow control — between source and destination
— Congestion control — between source and network
None in link layer because only one hop?

-y 23



Can be done by sender or network

e Real time requirements — things like video and audio

need extra info such as timestamp, loss rate, etc. So
hard to do with raw TCP/UDP

-y 24



Unreliable, Connectionless — UDP

e User Datagram Protocol (RFC 768)

o Ju

st an 8-byte header tacked onto the data packet

e No reliability, no rate control, stateless
If you want these things you have to add at higher layer

o Er
o W
o

O

ror control optional
ny none of those things? All add overhead.
Used when want packets to get through quickly.

Don't care about re-transmits, better for real-time

(VOIP, streaming?)

25



o Easy to implement, for low-level stuff like bootp/dhcp
o Good for broadcasting

e Provides process-to-process communication and per-
segment error control

e Can send UDP packets to a destination without having
to set up a connection first

-y 26



UDP Header

2 bytes 2 bytes
Source Port Destination Port
Packet Length Checksum

e 16-bits: source port (optional, says where it is coming
from in case need to respond, 0 if unused)

e 16-bits: destination port

e 16-bits: length (in bytes, includes the header)
min: 8, max: 65,515 (<64k to fit in 64k IP packet)

e 16-bits checksum (optional, O if unused, see below)

e data follows

-y 21



Port Number Review

e 16-bit, so 64k of them

e Can map to any you want, but there are certain well-
known ones. Look In /etc/services
For example. WWW is 80/tcp. DNS is 53/udp

e Most OSes, ports <1024 require root (why?)

e 1024 ... 49151 are registered IANA ports

e 490152 ... 65535 are ephemeral ports, dynamic for use by
any service

/Y 28



Uniquely identifying flow

e TCP/UDP on IPv4 represented by 104 bit socket pair
b-tuple
o Source/destination addr
o Source/destination port
o protocol ID (TCP or UDP)

e |Pv6 in theory has a specific field for this

/Y 29



UDP checksum

~ind info on this in RFC768 and RFC1071

f set to zero, ignored

Receiver drops packet if invalid checksum

Does not request resend, does not notify sender
(yes, really, no error message if dropped)

30



UDP checksum Algorithm

e Ones-complement sum of all 16-bit words in header and
payload

e Padded with Os to be multiple of 16-bits

e Also added to the checksum is the pseudo-header
(Layering Violation)
Enables receiver to catch problems (delivered to wrong
machine) — why could this be a problem?

o IPV4: a 96-bit pseudo header: source IP (2*16), dest

-y 31



IP (2*16), protocol (padded to 16), length
o IPv6: 128-bit src IP, 128-bit dest IP, 32-bit UDP len,
24-bit 0, 8-bit next/type (17 UDP)
e The ones’ complement of checksum is put in checksum
field. That way when you checksum a valid packet the
result will be 0.

-y 32



Ones’ Complement Refresher

e Positive numbers are same as always (with high bit 0)

e Negative numbers are represented by the inverse (bit
flipped) of positive. (no adding 1 (that's twos'’
complement)

e When adding, if there's a carry, it is wrapped around
and added in to the low bit ( “end-around carry")

e Subtraction is a bit more complicated

e [ here are two zeros, 0x0000 and Oxffff

/Y 33



Checksum Corner Cases

e What happens if checksum is 07 Conflict with disabled
checksum? Entered as Oxffff, which in ones complement
s -0

e Checksum considered mandatory on IPv6 because IPv6
header not checksummed

e \Why would you ever leave checksum out? Takes time to
compute, might care about latency over errors [video?]

-y 34



0x0000:
0x0010:
0x0020:
0x0030:

8875
2618
18ff
0000

UDP starts at

0x0040:
0x0050:
0x0060:

0120
7370
0000

563d
0031
feab
0000

0x36:

0001
6e03
0000

UDP example Packet

2a80
1140
1c39
8844

0000
6361
0000

0030
2610
2001

e239
0000
6400
00

18ab 1c39
0048 0100
4860 4860

0035 0031
0001 0377
0001 0001

86dd 6002
08da 0230
0000 0000

9cOe 8657
7777 0465
0000 2910

uV=x..0...9..¢
&..1.0%..H..... 0
..... 9..H‘H".
..... D.9.5.1...W
........... WWW. €
spn.com. ...... ).

35



UDP example Packet Decoded

e What is source port? What is destination port? Size?
e How can you tell what high-level protocol it is?
Can you make an educated guess from the ports?

36



UDP checksum example (from prev slide)

e 16-bit sum of “virtual header” (two IPv6 addresses,
protocol (0x0011) and length of udp packet/header
(0x0031)) is 0x2'9f8c

e 16-bit sum of UDP header leaving off checksum is Oxe29f

e 16-bit sum of UDP data is 0x2'elc0

e Add them get 0x6'63eb

e It's a 16-bit sum, so add Ox6 + O0x63eb = 0x63fl
ones complement is 0x9cOe, which matches the UDP
checksum field

-y 37



UDP and the Operating System

e Server: user binds to UDP socket

e OS sets up queue

e Network stack decodes packet, notes that it is UDP
Runs checksum, drops it if invalid

-inds port, looks to see if any processes listening for it
f so, adds to queue

f not, sends an ICMP “port unreachable” error message
All UDP messages to that port, no matter who sends
them, end up In the same queue.

/Y 38



Writing UDP sockets code

e Use SOCK_DGRAM rather than SOCK_STREAM

e Can skip the listen/accept state, as no connection is
there. Just receive the packets as they come in.

e Can't read then write, as no connection. For the server
to write back to the client it needs to use recvfrom()
which also provides ip/port

e o send a packet use sendto()

/Y 39



UDP Socket — Client code
// setup socket

socket_fd = socket (AF_INET, SOCK_DGRAM, 0);

// get dest address/port

dest=gethostbyname (DEFAULT_HOSTNAME) ;

memset (&dest_addr ,0,sizeof (dest_addr));
dest_addr.sin_family=AF_INET;

memcpy (dest->h_addr ,&dest_addr.sin_addr.s_addr ,dest->h_length);
dest_addr.sin_port=htons (port);

sendto (socket_fd ,buffer,strlen(buffer),0,
(struct sockaddr *)&dest_addr, dest_len);

40



UDP Socket — Server code

// setup socket

socket_fd = socket (AF_INET, SOCK_DGRAM, 0);

// wait for incoming connection

bind (socket_fd, (struct sockaddr *) &server_addr, sizeof (server_addr));

// read data from socket, including client_addr info
recvfrom(socket_fd ,buffer , (BUFFER_SIZE-1),0,

(struct sockaddr *) &client_addr,

// send reply

&client_len);

sendto (socket_fd ,buffer,strlen(buffer),O0,

(struct sockaddr *)&client_addr,

client_len);

41



Common UDP Services

e Obsolete: echo/discard/users/daytime/quote/chargen
e Nameserver

e bootp/tftp

e ntp (network time protocol)

e Old versions of NFS
® snmp

42



UDP real-time

e Real-Time Protocol (RFC1889)
e On top of UDP, multiplexes
e data streams

e timestamps

43



