
ECE 435 – Network Engineering
Lecture 14

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

24 February 2025

https://web.eece.maine.edu/~vweaver


Announcements

• HW#5 was posted

• Midterm tentatively March 12th

• Will post project info soon

1



TCP State Machine

• 11 possible states

◦ starts in CLOSED

◦ LISTEN – waiting for a connection

◦ SYN-SENT – started open, waiting for SYN response

◦ SYN-RECEIVED – waiting for ACK

◦ ESTABLISHED – open, for two-way communication

◦ FIN-WAIT-1 – application has said it’s finished

◦ FIN-WAIT-2 – the other side agreed to release

◦ CLOSE-WAIT – waiting for a termination request

2



◦ CLOSING – waiting for an ACK of closing request

both sides closed at once

◦ LAST-ACK – waiting for ACK from last closing

◦ TIME-WAIT – waiting to transition to CLOSED long

enough to ensure other side gets last ACK

• There is a large state diagram you can lookup

3



TCP State Machine – Tools

• Linux has tools that can show you socket states

◦ netstat was traditional (now obsolete)

◦ ss (socket status) is current

has lots of options, things like ss -a -i will show

more than you ever want to know

$ ss -a

Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port

tcp ESTAB 0 0 192.168.8.146:43294 192.168.8.47:ssh

tcp LISTEN 0 128 0.0.0.0:ssh 0.0.0.0:*

4



Typical Connection seen by Client

• CLOSED

user does connect(), SYN sent (step 1 of handshake)

• SYN-SENT

waits for SYN+ACK, sends ACK (step 3 of handshake)

• ESTABLISHED

sends/receives packets

eventually user will close() and send FIN

• FIN-WAIT-1

FIN sent, waiting for ACK

5



• FIN-WAIT-2

one direction closed

received ACK of FIN, wait for FIN from other side,

respond with ACK

• TIME-WAIT

wait until timeout to ensure all packets done in case

ACK got lost

• CLOSED

6



Typical Connection seen by Server

• CLOSED

waits for listen()

• LISTEN

gets SYN, sends SYN+ACK (step 2 of handshake)

• SYN-RECVD

waits for ACK

• ESTABLISHED

sends/receives

FIN comes in from client, sends ACK

7



• CLOSE-WAIT

closes itself, sends FIN

• LAST-ACK

gets ACK

• CLOSED

8



TCP Reliability – Per Segment

• checksum (algo same as UDP), also drops silently on

error

• also covers some fields in IP header to make sure at right

place

• TCP checksum is mandatory

• Checksum is fairly weak compared to crc32 in Ethernet

◦ Catch the error 99.9984% of time. Is that enough? At

gigabit speeds this could be a few packets per second

with errors

9



◦ See “Stone and Partridge” When The CRC and TCP

Checksum Disagree

10



TCP Reliability – Per Flow

• What to do in face of lost packets? Need to notice and

retransmit and handle out-of-order

• Sequence number generated for first blob (octet?), 32-bit

number in header

• Sender tracks sequence of what has been sent, waiting

for ACK

• On getting segment, receiver replies with ACK with

number indicating the expected next sequence number,

and how much has been received. ”All data preceding X

11



has been received, next expected sequence number is Y.

Send more”

12



TCP Reliability – Advanced ACK handling

• Cumulative ACK – all previous data previous to the ACK

has been received

• Selective ACK (requires options?) – can indicate which

missing segments need to be resent

13



Ways to Notice Transmission Problems

• Checksum

• Acknowledgement

• Time-out

14



For Comparison: Good Transaction
Sender Receiver

SEQ=100, Len=50

ACK = 150

SEQ=150, LEN=40

ACK=190

• You don’t have to wait for ACK before sending more

• ACKs can be piggybacked on packets going other

direction

15



Error: Corrupted or Lost Packet
Sender Receiver

SEQ=100, Len=50

ACK=190

SEQ=150, LEN=40

ACK = 100

SEQ=100, Len=50

• Packet never made it

• Can’t ACK next packet due to missing data, so re-sends

previous ACK (ACK=100)

• When re-send? Timer? After 3 duplicate ACKs?

16



Error: Delay or Duplicate Packet
Sender Receiver

Timeout

SEQ=100, Len=50

ACK = 150

SEQ=100, Len=50

• Duplicate packet (How? On sender timeout happens if

ACK not received in reasonable time, so resends)

• Two identical packets arrive at receiver

• TCP discards packets with duplicate SEQ (any security

issues with that?)

17



Error: Out-of-order Packet
Sender Receiver

SEQ=100, Len=50

SEQ=150, LEN=40

ACK = 100

ACK=190
SEQ=100, Len=50

• Out-of-order packet

• Do not ACK packet until preceding ones make it

• For performance can queue up out of order ones so they

don’t have to be resent

18



Error: Lost ACK
Sender Receiver

SEQ=100, Len=50

ACK=190

ACK = 150

SEQ=150, LEN=40

• ACKs cumulative, so if the next packet causes an ACK

then it doesn’t matter. Otherwise a timeout?

19



TCP Timers

• Timers can catch when things go missing/go wrong

• What should the timer value be?

◦ Too short, send extra packets,

◦ Too long and takes long time to notice lost packets.

• On the fly measures round trip time. (RTT) When

send segment, start timer, updates. Various algorithms.

Often 2 or 4x

20



TCP Timers

• Connection Timer – after send SYN if no response in

time, reset

• Retransmission Timer – retransmit data if no ACK

• Delayed ACK timer – can usually wait for outgoing data

and can tag an ACK along for free. If it’s been too long

and no data is being sent, timer expires and have to

send stanadlone ACK

• Persist Timer – solve deadlock where window was 0, so

waiting, and missed the update that said window was

21



open again.

Sends special probe packet. Keep trying every 60s?

• Keepalive Timer – if connection idle for a long time,

sends probe to make sure still up

• FIN WAIT 2 Timer – avoid waiting in this state forever

if other side crashes

• TIME WAIT TIMER – used in TIME WAIT to give

other side time to finish before CLOSE

22



Flow Control

• What happens if a fast computer sending to a slow

receiver?

• What if receiver can’t keep up?

• Should it just drop packets and request resend when

caught up?

• This could potentially waste a lot of sending on the

sender’s part

23



How Much Data to Send?

• How much data can be sent before receiving an ACK

• Extreme – just 1 byte. Inefficient (overhead). Also

modern systems, a fiber line coast to coast a long time

to ACK packet

24



How does OS/TCP Track Sent Data

• Sliding Window Protocol (Sender Window)

◦ Circular buffer holds writes

◦ Once data ACKed, can slide (grow/shrink) window

◦ Once circular buffer full, write() calls will block

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Next

to write

Next
to send

Sent, no ACK Ready to Send EmptySent+ACKed

25



Receiver Window (RWND)

• Receiver “advertises” a window, how much incoming

data it can handle

• Example:

◦ Receiver has 4k buffer

◦ Sender does 2k write (2k/SEQ=0)

◦ Receiver sends back ACK=2k, WIN=2048 (can take

up to 2k more)

◦ Application sends 2k (2k, SEQ=2k)

◦ If it is full, receiver might send ACK=4k, WIN=0

26



◦ Later once buffer clears up a bit (application reads 2k

maybe) sends ACK=4096, WIN=2k

◦ Sender then sends some more

27



Receiver Window – Waiting on WIN=0

• When happens when waiting on a WIN=0?

• What if the ACK restarting things gets lost?

• Do you wait forever?

◦ Sender can send a “window probe”, a 1-byte packet

with retransmit window and next byte expected

28



Window Management / Flow Control

• A simple implementation of TCP might result in a lot of

extraneous packets being sent

• Can negatively effect flow control and cause congestion

• Things to note:

◦ Senders do not have to transmit incoming data

immediately

◦ Receivers do not have to ACK immediately

◦ Try to avoid 1-byte payloads (which have 40 bytes of

overhead if you include TCP and IP headers)

29



Buffering on Sender Side

• Senders can buffer data

• If know receiver window is 1k, can save up until 1k is

ready to send and just send single packet. Can help

performance.

• Old Example

◦ Typing logged in via telnet (ssh similar, though for

encryption reasons you probably wouldn’t send just a

single byte with ssh)

◦ Using editor, press a key. Writes to socket,

30



immediately sends single-byte packet

◦ Other end receives it, TCP stack immediately sends

ACK with window reduced by 1

◦ Editor does a read() and gets byte, TCP stack

immediately sends updated ACK with window

increased by 1

◦ Editor then actually prints the letter that was typed,

which gets sent as another 1-byte packet

◦ This single key-press results in 4 packets (160x

overhead)

◦ Can we reduce this?

31



Sender Window Problems

• What if sender only sending 1-byte at time?

• Can do “delayed acknowledgement” where you buffer up

to 500ms for additional input. Adds lot of latency.

• Nagel’s Algorithm

◦ (John Nagel, 1984) RFC896

◦ When only sending one byte at a time, send one

packet, but buffer the rest until the outstanding data

is ACKed

◦ Also take into account window size.

32



◦ Widely used, can be bad for things like X window

forwarding as mouse movements bunched together.

◦ Interacts poorly with Delayed ACKs

◦ Often causes despair to people unaware and having to

debug latency problems

◦ TCP NODELAY option disables.

33



Receiver Window Problems

• Silly Window Syndrome

• Slow reader on receive side. Application reads one byte

out, stack immediately advertises 1-byte window and

causes back-and-forth

• Clark’s solution

◦ If receiving small amounts, close window until buffer

half empty and then open again.

34


