
ECE 435 – Network Engineering
Lecture 36

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

25 April 2025

https://web.eece.maine.edu/~vweaver

Announcements

• Final is Monday, May 5th 10:30am, here

Will review for it on Monday

• Will go over HW#11 Monday

• Some presentations on Monday

If you are ready to present on Monday let me know,

there is room (sorry for the confusion on that)

1

Sample Project Presentation

Applesoft BASIC Webserver on 8-bit Apple II

2

Network Security Continued

3

General Security Issues

• Malware

• Virus

• Worms (spread over network)

Famously the Morris Worm (1988)

• Trojan Horses

4

Application Layer

• Web-browser

◦ cross-site scripting/XSS

Inject javascript from other sites into that being

displayed, runs with permissions of document

• e-mail (can you get a virus over e-mail?)

◦ Phishing

◦ Ransomware

5

ssh security

• Fail2ban

• Nonstandard port

• Port knocking

• Call asterisk for one-time pin?

• No-password (key only)

• LCD device

6

Fuzzing

• Searching for issues by sending random (or almost

random) inputs and see what happens

7

Mitigations

• DoS

◦ blackholing/sinkholing. Send all traffic to non-existent

server

◦ firewalls

• Weak passwords

◦ Password rotations, strength (downsides of this?)

◦ Using public key instead of password

◦ Two-factor Authentication

8

VPN/Tunnel

• Create a tunnel, TCP/IP inside of TCP/IP directly from

your machine into remote network (past firewall) or

network-network.

• Link layer tunnel – all Ethernet packets go through as if

were local

• IPSEC – IP level tunnel, IP in certain range (or all) go

through the secure IP tunnel to other side

9

Firewalls

• Runs on machine, intercepts all incoming packets before

allowing them through.

• packet-filter based – looks at layer3/layer4

fast because addr/port fixed locations

• application-gateway – looks into protocol

may be a proxy server (so can do things like filter http

requests to certain websites)

10

Firewalls

• 1st generation – packet filtering. Check for port number

or IP destination and drop if not OK

• 2nd generation – stateful firewall. Keep a packet history

so it can make decisions based on state of connection

(new connection, existing connection, etc)

• 3rd generation – application level. Can understand

protocols like ftp, http, etc, and make decisions

11

Deep Packet Inspection

• Can be used to block viruses and such, but also

censorship

• WAF (Web-application Firewall) at CDNs that blocks

certain keywords found in attacks, but can block

legitimate users who are maybe just trying to talk about

it (for example, block any html with “virus” in it)

some insurers force companies to use them, can lead

to hard-to-debug networking issues when traffic dropped

because of it

12

• Encryption can help against this (for better or worse)

• Organizations can MitM you by forcing CA authority

that lets them decrypt your connections at the network

border

•

13

Firewall – Configuring

• eBPF – extended Berkeley Packet Filter

◦ Filter can be written in high level language and

compiled and inserted into kernel, faster than scripted

◦ Special language, deterministic finish, limited looping,

etc

◦ Linux used for things besides filters these days

14

Organizational Firewall Setup

• firewall to outside, extra DMZ layer where any servers

might be, then an additional more restrictive firewall to

internal network.

• DMZ – Demilitarized Zone, part of network

infrastructure separate from the internal parts, used

for untrusted machines or machines needing to talk to

outside world (webservers? guest wi-fi?)

• why? if servers compromised don’t want free reign over

rest of network.

15

Over-Reliance on NAT

• To do NAT you use firewall technology. Monitor

incoming packets. Only allow those from existing

connections. Port forward to inside.

• Many people have a router implementing NAT and so

get a fairly strict IPv4 firewall “for free”

• A firewall doesn’t have to do NAT

• IPv6 doesn’t need a NAT, and so you need an IPv6

firewall if you want to be as safe

• People forget this and so IPv6 networks can be less

16

protected

17

iptables

• Linux changes up firewall interface all the time

• ipfwadm (linux 1.2 - 2.2)

• ipchains (linux 2.2 - 2.4) stateless

• netfilter/iptables (2.4) – stateful firewall

can filter on lots of things. BPF filters

NAT is done via this

port forwarding

had 4 separate engines (ipv4, ipv6, ethernet, arp)

• nftables (linux 3.13) – merges things, virtual machine

18

(but not BPF) to speed things up

• Separate ip6tables utility for setting IPv6 rules

• Also arptables/ebtables for filtering ethernet

19

iptables example

Flush all rules

iptables -F

iptables -t nat -F

iptables -t mangle -F

iptables -A FORWARD -i eth1 -o eth0 -m state --state ESTABLISHED,RELATED -j ACCEPT

iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT

iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE

echo 1 > /proc/sys/net/ipv4/ip_forward

iptables -t nat -A PREROUTING -p tcp -i eth1 --dport 2131 -j DNAT --to-destination 192.168.8.18:22

iptables -A FORWARD -p tcp -d 192.168.8.18 --dport 22 -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

20

encryption problems

• Keys leaked (DVD/game console issues)

• poor random numbers used (Debian problem)

• differential cryptanalysis (start with similar plaintexts

and see what patterns occur in output) [DES IBM/NSA

story]

• Power/Timing analysis – note power usage or

timing/cache/cycles when encryption going on, can leak

info on key or algorithm

21

XZ Vulnerability Case Study (2024)

• Was in the news. Computer security but relate to stuff

in this class.

• Problem with open source software and trust. Can you

trust random contributors? Can you trust random tools?

Reflections on Trusting Trust.

• ssh vulnerable. Maybe only thing you let through

incoming to your firewall

• Because of this ssh much scrutinized for bugs

• What if some other code unrelated can take over ssh?

22

XZ Case Study (bg)

• Supply chain attack?

• What if someone pretened they had a bug fix but instead

it introduced evil code?

• Changeset that is like if (!strncmp(passwd,”mypassword”)) do whatever()

• In theory easy to spot, lots of reviewers, benefit of open

source everyone can see in the open, run tools

• What if try to be sneaky about it?

• if (uid=0) printf (”Error !\n”);
• Underhanded C contest

23

• U of Minnesota Linux kernel incident. IRB. No justice.

24

XZ Case Study (how it happened)

• XZ issue. Problem not with Linux, or ssh. Was with xz

compression library.

• Maintainer volunteer, overworked, someone showed up

offered to help, gradually gained trust. Eventually given

commit privileges.

• They started making seemingly innocent changes

• Broke some of the hardening tests in autuoconf,

including adding a hard to see “.” so the test for it

would always fail

25

• No actual code added to C code, but part of build

process it would take some of the files from the test

suite and patch the binary

26

XZ Case Study (details)

• original calls get cpuid at library start to see if can

use CLMUL instruction

• adds a get cpuid with one underscore to do sneaky

stuff

• systemd on Linux links against this. The library loaded

by systemd before launching sshd. Would override some

symbols (complicated linker stuff) but would override

RSA key checking

• When the certificate came in with the connection, if it

27

decompressed with the key from attacker then treat it

as a binary and run it

• This is bypassing everything, would be really hard to

detect in audit.

28

XZ Case Study (Detection)

• How was it noticed? postgres guy was benchmarking

using perf and noticed ssh connections taking 10x as

long, tracked it down. Luck.

• Attacker playing long game. Years to do things.

Apparently had other accounts that were doing things

like patching fuzzer/security tools to try to ignore this,

also bugging stable distributions to update to newest

version

• Only really got to the point of testing in Linux distros

29

(debian unstable)

• Who responsible? They were careful to make it look like

from China, some analysis of timezones maybe it was

eastern-europe/middle east timezone

• Cuckoo’s Egg by Cliff Stoll

30

