
ECE 435 – Network Engineering
Lecture 8

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

21 September 2017

http://web.eece.maine.edu/~vweaver

Announcements

• HW#3 due

• HW#4 will be posted

• Sorry about going over time last class. Let me know if

going over.

• Missed things from last time:

◦ Common e-mail servers: configuring them, specifically

SendMail

◦ Common name servers: BIND (named)

◦ gethostbyname() is how you resolve a hostname,

1

used in our sockets code

2

HW#2 Review

• Mostly C issues

◦ don’t ignore compiler warnings!

◦ The biggest issue if your browser isn’t displaying things

is the wrong Content-length:

If you send less data than you say you will, it will wait

forever for it, or else give a ”connection reset” if you

close the connection.

◦ Be sure you read everything the browser is sending

(Either big enough buffer, or repeat in loop reading it

3

all). If you send a response before it is done sending it

can confuse things.

◦ sizeof() operator. char temp[1024]; what is

sizeof(temp)? hint: it’s not the same as strlen()

◦ have to read/write in loop if file sending is bigger than

your file buffer

◦ just don’t take addresses with ampersand randomly

◦ Can you use strcat() with binary file? why not?

Can binary files have zeros?

◦ error checking!

◦ Many crashed if I requested the README file. Have to

4

handle unexpected input from user. (in this case, no

file extension)

◦ include proper header file. man can tell you

◦ Difference between ’ ’ and ” ”

◦ sprintf() 300 bytes into 100 byte array (snprintf?)

◦ Only reading a small amount of bytes (100) when your

file is bigger.

• Header and time format. There is a particular format,

some browsers will ignore it, others not.

• Also depends on browser. For example, if have wrong

content size, lynx just runs with it. wget tries forever.

5

Other browsers give a connection reset error?

• Can use wget -S to see the headers you are sending

• If really HTTP/1.1 you should keep connection open,

multiple requests on one connection.

• If you use firefox you’ll see it also request favico.ico?

Why? What should you return (assuming the file doesn’t

exist?) 404.

• Time wait

• Something Cool

6

The Transport Layer

OSI TCP/IP

7 Application Application

6 Presentation

5 Session

4 Transport Transport

3 Network Internet

2 Data Link Host-to-network

1 Physical Host-to-network

7

The Transport Layer

• Responsible for reliable point-to-point data transport

independent of whatever lies beneath.

• Provide process-to-process connectivity, and per-

segment error control and per-flow reliability, as well

as rate control

• Can be more reliable than underlying network

• TCP (Transmission Protocol Layer)

◦ connection oriented

◦ stateful

8

◦ per-flow reliability and rate control

• UDP (User Datagram Protocol)

◦ stateless

◦ connectionless

• the “socket” is the API from old homework

9

The Transport Layer

• Terminology: application = process, data-transfer-unit

is a segment, traffic is a flow

• addressing – each process needs a unique ID. For

internet, this is the “port” number (16-bit)

• Rate control

– Flow control – between source and destination

– Congestion control – between source and network

None in link layer because only one hop?

10

Can be done by sender or network

• Real time requirements – things like video and audio

need extra info such as timestamp, loss rate, etc. So

hard to do with raw TCP/UDP

11

Unreliable, Connectionless – UDP

• User Datagram Protocol (RFC 768)

• No reliability, no rate control, stateless

If you want these things you have to add them at higher

layer

• Error control optional

• Why none of those things? All add overhead.

◦ Used when want packets to get through quickly.

◦ Don’t care about re-transmits, better for real-time

(VOIP, streaming?)

12

◦ Easy to implement, for low-level stuff like bootp/dhcp

◦ Good for broadcasting

• Provides process-to-process communication and per-

segment error control

• Can send UDP packets to a destination without having

to set up a connection first

13

UDP Header

• 16-bits: source port (optional, says where it is coming

from in case need to respond, 0 if unused)

• 16-bits: destination port

• 16-bits UDP length (length in bytes, includes the header,

minimal size is 8)

• 16-bits checksum (optional, see below)

• data

14

Port Numbers

• 16-bit, so 64k of them

• Can map to any you want, but there are certain well-

known ones. Look in /etc/services. For example.

WWW is 80/tcp. DNS is 53/udp

• On most operating systems, ports below 1024 require

root (why?)

• Source/destination addr + source/destination port +

protocol ID (TCP or UDP) is a socket pair (or 5-tuple)

15

is 104 bits that uniquely identify a flow for IPv4. IPv6

has a specific field for this

16

UDP checksum

• If set to zero, ignored

• Receiver drops invalid checksums (does not request

resend)

• 1s complement of sum all 16-bit words in header and

payload

padded with 0s to be multiple of 16-bits

• Also added to the checksum is a 96-bit pseudo header

that has source IP, dest IP, protocol, length. Enables

receiver to catch problems with there to (delivered to

17

wrong machine) – why could this be a problem?

• What happens if checksum is 0? entered as 0xffff

What happens if it was 0xffff? Remember in ones

complement 0xffff is negative zero.

• Checksum considered mandatory on IPv6 because IPv6

header not checksummed

• Why would you ever leave checksum out? Takes time to

compute, might care about latency over errors [video?]

18

UDP checksum example

• 0x0000: 8875 563d 2a80 0030 18ab 1c39 86dd 6002 .uV=*..0...9..‘.

0x0010: 2618 0031 1140 2610 0048 0100 08da 0230 &..1.@&..H.....0

0x0020: 18ff feab 1c39 2001 4860 4860 0000 00009..H‘H‘....

0x0030: 0000 0000 8844

UDP:

e239 0035 0031 9c0e 8657D.9.5.1...W

0x0040: 0120 0001 0000 0000 0001 0377 7777 0465www.e

0x0050: 7370 6e03 636f 6d00 0001 0001 0000 2910 spn.com.......).

0x0060: 0000 0000 0000 00

• 16-bit sum of “virtual header” (two IPv6 addresses,

protocol (0x0011) and length of udp packet/header

(0x0031)) is 0x29f8c

• 16-bit sum of UDP header leaving off checksum is 0xe29f

19

• 16-bit sum of UDP data is 0x2e1c0

• Add them get 0x6 63eb

• It’s a 16-bit sum, so add 0x6 + 0x63eb = 0x63f1

ones complement is 0x9c0e, which matches the UDP

checksum field

20

OS UDP

• When listening on UDP, sets up a queue

• Network stack decodes and gets UDP, finds port, looks

to see if any processes listening on that port

• If so, adds to queue

• If not, sends an ICMP “port unreachable” error message

• All UDP messages to that port, no matter who sends

them, end up in the same queue.

21

Writing UDP sockets code

• Use SOCK DGRAM rather than SOCK STREAM

• Can skip the listen/accept state, as no connection is

there. Just receive the packets as they come in.

22

Common UDP Services

• Obsolete: echo/discard/users/daytime/quote/chargen

• Nameserver

• bootp/tftp

• ntp (network time protocol)

• snmp

23

UDP real-time

• Real-Time Protocol (RFC1889)

• On top of UDP, multiplexes

• data streams

• timestamps

24

