
ECE 435 – Network Engineering
Lecture 9

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

26 September 2017

http://web.eece.maine.edu/~vweaver


Announcements

• HW#4 was posted, due Thursday

• Hexdump format

• Midterm next Tuesday details next class

1



HW#3 Review

• md5sum/encryption, seems to have gone well

• e-mail

◦ First warning sign – says its from a bank, but the

return address is from a Florida dental school

Also not a bank of mine

◦ pop from deater.net via fetchmail

◦ LMTP – local mail transport. LHLO. No mail queue,

says right away whether deliver mail is possible.

◦ encrypted and verified from UFL, but sent from

2



videotron.ca cablemodem

◦ Virus scanned and SPAM scanned, just sort of barely

passed

◦ pdf attached probably had some sort of exploit or

phishing document. Didn’t open.

3



TCP

• Transmission Control Protocol

• RFC 793 / 1122 / 1323

• Reliable, in-order delivery.

• Adapts to network congestion

• Takes data stream, breaks into pieces smaller than 64k

(usually 1460 to fit in Ethernet) and sends as IP

4



• No guarantees all packets will get there, so need to

retransmit if needed.

• Multiple connections can share same port (i.e. webserver

on port 80 can handle multiple simultaneous requests)

• Point-to-point (can’t multicast)

• Full duplex

• Byte stream, if program does 4 1024byte writes there’s

no guarantee the other end sees 4 chunks of 1024, only

4k stream of bytes is guaranteed.

5



• PUSH flag can be sent that says not to buffer (For

example, if interactive command line)

• URGENT flag can be sent that says to transmit

everything and send a signal on the other side that

things are urgent.

6



TCP Header

Fixed 20-byte header. Up to 64k-20 in size. Data can be

empty.

16-bits 16-bits

Source Port Destination Port
Sequence Number

Acknowledgement Number
Length(4) Window Size

URG/ACK/PSH/RST/SYN/FIN
Checksum Urgent Pointer

Options (0-32)
Data (optional)

7



TCP Header Format

• 16-bit source port

• 16-bit dest port

• 32-bit sequence number

• 32-bit ack number next byte expected, not last one

received

• 4-bit header length number of 32-bit chunks (includes

header)

• 6-bit reserved (not used) ECN bits

• 6 bits of flags

8



◦ U (URGent) – also the urgent pointer puts to urgent

byte

◦ ACK (acknowledge) – 1 if ack field valid, otherwise

ack field ignored

◦ PSH – receiver should process the data immediately

and not buffer it waiting for more to come in

◦ RST (reset) – reset a connection because something

has gone wrong

◦ SYN (synchronize) – used to establish connection

CONNECTION REQUEST (SYN=1,ACK=0) and

CONNECTION ACCEPTED (SYN=1,ACK=1)

9



◦ FIN – used to release a connection

• 16-bit window size – Only in ACK, says how many bytes

to send back. This can be 0, which means I received

everything but I am busy and can’t take any more right

now (can send another ACK with same number and

nonzero window to restart)

• 16-bit checksum – similar to UDP also with pseudo

header

• 16-bit urgent pointer

• options (32-bit words) – we’ll discuss these later

• data

10



TCP Opening Connection
Sender Receiver

SYN SEQ=X

SYN=1 ACK=0

SYN+ACK

SEQ=Y, ACK=X+1

ACK

SEQ=X+1, ACK=Y+1

• Three-way handshake (Tomlinson 1975)

◦ Server does LISTEN/ACCEPT to wait for connection.

◦ Client issues CONNECT: destination/port/size, etc.

◦ CONNECT chooses random initial sequence number

(ISN) X

11



Sends SYN(SEQ=X) (SYN=1 ACK=0) with port and

sequence number

◦ Server receives packet. Checks if listening on that

port; if not send back a packet with RST to reject.

◦ Otherwise it can accept

sends back ACK(X+1) plus SYN(SEQ=Y) with

sequence of own

◦ Client then responds with the server SYN ACK(Y+1)

SEQ=x+1

◦ Connection is established

• SYN number picked, not to be 0. Originally clock based

12



(random these days?). If machine reboots should wait

for maximum lifetime to make sure all close

• Why do this? What happens with simultaneous

connection?

13



TCP Closing Connection

• Closing connection

• Although full duplex, almost like two independent one-

way connections, released independently

– one side sends packet with FIN

– other side sends ACK of FIN, that direction is shut

down

– other direction can keep sending data though

– at some point other side sends FIN

– this is ACKed

14



– Two army problem?

Two generals on opposite side trying to co-ordinate

attack. Any message can be intercepted by enemy. So

say “attack at 9pm” but that could be lost. Could

require other side to send reply, but that could be

lost. You need infinite messages to guarantee it got

through.

If FIN not ACKed within two packet lifetimes, will

close anyway. The other side eventually notices and

closes too.

15



TCP State Machine

• 11 possible states

◦ starts in CLOSED

◦ LISTEN – waiting for a connection

◦ SYN-SENT – started open, waiting for a returning

SYN

◦ SYN-RECEIVED – waiting for ACK

◦ ESTABLISHED – open, two-way communication can

happen

◦ FIN-WAIT-1 – application has said it’s finished

16



◦ FIN-WAIT-2 – the other side agreed to release

◦ CLOSE-WAIT – waiting for a termination request

◦ CLOSING – waiting for an ACK of closing request

both sides closed at once

◦ LAST-ACK – waiting for ACK from last closing

◦ TIME-WAIT – waiting to transition to CLOSED long

enough to ensure other side gets last ACK

• large state diagram

17



Typical Connection seen from Client

• CLOSED

user does connect(), SYN sent (step 1 of handshake)

• SYN-SENT

waits for SYN+ACK, sends ACK (step 3 of handshake)

• ESTABLISHED

sends/receives packets

eventually user will close() and send FIN

• FIN-WAIT-1

FIN sent, waiting for ACK

18



• FIN-WAIT-2

one direction closed

received ACK of FIN, wait for FIN from other side,

respond with ACK

• TIME-WAIT

wait until timeout to ensure all packets done in case

ACK got lost

• CLOSED

19



Typical Connection seen from Server

• CLOSED

waits for listen()

• LISTEN

gets SYN, sends SYN+ACK (step 2 of handshake)

• SYN-RECVD

waits for ACK

• ESTABLISHED

sends/receives

FIN comes in from client, sends ACK

20



• CLOSE-WAIT

, closes itself, sends FIN

• LAST-ACK

gets ACK

• CLOSED

21



TCP Reliability

• Per-segment error control

– checksum, Same as UDP.

– also covers some fields in IP header to make sure at

right place

– TCP checksum is mandatory

– Checksum is fairly weak compared to crc32 in Ethernet

• Per-flow reliability

– What to do in face of lost packets? Need to notice

22



and retransmit and handle out-of-order

– Sequence number generated for first blob (octet?),

32-bit number in header

– Sender tracks sequence of what has been sent, waiting

for ACK

– On getting segment, receiver replies with ACK with

number indicating the expected next sequence number,

and how much has been received. ”All data preceding

X has been received, next expected sequence number

is Y. Send more”

– Selective ACK – has received segment indicated by

23



ACK

– Cumulative ACK – all previous data previous to the

ACK has been received

24



Receiver Window

• Receiver Window (RWND)

• example

◦ Receiver has 4k buffer

◦ Sender does 2k write (2k/SEQ=0)

◦ Receiver sends back ACK=2k, WIN=2048 (can take

up to 2k)

◦ Application sends 2k (2k, SEQ=2k)

◦ If it is full, receiver might send ACK=4k, WIN=0

◦ Later once buffer clears up a bit (application reads 2k

25



maybe) sends ACK=4096, WIN=2k

◦ Sender then sends some more

• When waiting on a WIN=0 can send two things, URG

to kill the connection, or a 1-byte packet to have

retransmit window and next byte expected (in case the

ack restarting was lost, otherwise deadlock)

26



Window Management / Flow Control

• Senders do not have to transmit incoming data

immediately

• Receivers do not have to ACK immediately

• Can have a lot of overhead to send 40byte packet for

one byte payload

• Senders can buffer data, for example if know window is

4k can wait until they have 4k. Can help performance.

• For example, typing at keyboard on telnet/ssh might

send when an editor. Press key, send a packet. Get

27



ACK. Then when read, another ACK updating window

size. Then finally draw char on screen, send packet with

that. 4 packets for one keypress

• One way to help is avoid window updates for up to

500ms in hope they can tag along with a real outgoing

packet

28



Silly Window Syndrome

• Worst case, read one byte at a time, and then huge

packet overhead for just one byte. Can be sender or

receiver.

• Solution on sender end Nagel’s algorithm – when data

coming in one byte at time, send first then buffer rest

until the first byte acknowledged. Also take into account

window size. Widely used, can be bad for things like

X window forwarding as mouse movements bunched

together. TCP NODELAY option disables.

29



• Solution on receiver end Clark’s solution – application

reading out the bytes one at a time. Send window

updates each time, other side resend one byte, send

message window full, etc. Solution (Clark) to wait until

buffer is the original max segment size, or half empty

• Another – Delayed ACK

delay the ACK so the other side has time to queue up

data

Can’t delay by more than 500ms though

30


