
ECE 435 – Network Engineering
Lecture 10

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

28 September 2017

http://web.eece.maine.edu/~vweaver


Announcements

• HW#4 was due

• HW#5 will be posted. You’ll have 2 weeks due to

midterm/fall break

• Midterm Tuesday

• Out of town Tues+Wed for MEMSYS’17. Plan to be

back by class on Thursday, will send e-mail if something

goes wrong.

1



Midterm Review

• Can have one page (8.5” x 11”) of notes if you want,

otherwise closed everything. I do not think you should

need a calculator.

• Mostly short answer questions. No long coding exercises

or protocol memorization. Maybe some sockets code,

but analyzing it not writing it.

• Know the OSI layers and what each one is for.

• Know at a high level the following protocols:

◦ WWW/http

2



◦ e-mail

◦ DNS

• UDP + TCP

◦ Know the 3-way handshake

◦ Know the tradeoffs between UDP and TCP

◦ Why does DNS use UDP

◦ Why do webservers use TCP

3



Flow Control

• How much data can be sent before receiving an ACK

• Extreme – just 1 byte. Inefficient (overhead). Also

modern systems, a fibre line coast to coast a long time

to ACK packet

• Sliding Window Protocol

• Circular buffer (see figure)

• Size of the sliding window: how many outstanding

there can be. Once it gets ACKed, can slide window.

grow/shrink size of window.

4



Sent+ACKed Sent, no ACK yet Can be Sent Now Empty

10 11 12 13 14 15 16 17 18 19 20 21

⇑
Next

5



Error Correction

• Ways to Catch Errors

◦ Checksum

◦ Acknowledgement

◦ Time-out

• Example types of Errors

◦ Corrupted packet

SEQ 1401 + 200 bytes, SEQ 1601+200, SEQ

1801+200 sent

Last one corrupted receiver only acks through

6



ACK=1601

Eventually timeout, and sender will retransmit

◦ Lost packet

Same as previous

◦ Duplicate packet (how can happen? a timeout happens

and is resent just before ACK gets in)

TCP discards packets with duplicate SEQ

◦ Out-of-order packet

Do not ACK packet until preceding ones make it.

For performance can queue up out of order ones so

they don’t have to be resent

7



◦ Lost ACK

ACKs cumulative, so if the next packet causes an ACK

then it doesn’t matter. Otherwise a timeout?

8



TCP Timer Management

• What should the timer value be? Too short, send extra

packets, too long and takes long time to notice lost

packets.

• On the fly measures round trip time. (RTT) When

send segment, start timer, updates. Various algorithms.

Often 2 or 4x

• Connection Timer – send SYN. If no response in time,

reset

9



• Retransmission Timer – retransmit data if no ACK

• Delayed ACK timer – if send a packet, tag an ACK

along if timer expires and no outgoing data, have to

send stanadlone ACK

• Persist Timer – solve deadlock where window was 0, so

waiting, and missed the update that said window was

open again.

Sends special probe packet. Keep trying every 60s?

• Keepalive Timer – if connection idle for a long time,

sends probe to make sure still up

10



• FIN WAIT 2 Timer – avoid waiting in this state forever

if other side crashes

• TIME WAIT TIMER – used in TIME WAIT to give

other side time to finish before CLOSE

11



TCP Congestion Control

• Fast network feeding small receiver (flow control?)

• Slow network feeding big receiver (problem on sending

side, lose packets, congestion control)

• Two windows, receiver window (RWND) looked at

previously, and congestion window (CWND) (kept

locally)

• Amount can send is the minimum of the two windows

• Setup

◦ Congestion window set to max segment size

12



◦ Send one max segment, arm timer

◦ If ACK received before timer goes off, good. Double

the size.

◦ Repeat, exponential growth. Called ”slow start”

◦ “internet (?)” has a limit where it stops exponential

and moves to linear growth

◦ eventually hit receiver window size and stop

• Changed over the years.

• Initial implementation no congestion control, not needed

(not that much traffic)

• After 8 years (1980s) introduced by Van Jacobson (Van

13



is his first name) – internet facing “congestion collapse”

– would send as fast as possible, packets would be

dropped, hosts retransmit, even more congestion

• Usually assume corrupted packets are rate, at least on

wired. Wireless. More lost packets, so shouldn’t slow

down but maybe try harder in congestion

14



TCP Tahoe

• TCP Tahoe (v2) (BSD 4.2 1988) added congestion

avoidance, fast retransmit (Van Jacobsen)

• Slow start – probing bandwidth with few rounds.

• CWND set to 1 and exponentially increases with each

ACK until hits ssthresh

• congestion avoidance – slow probing but rapid respond

to congestion

• AIMD additive increase multiple decrease.

• Fast retransmit– transmitting lost packets immediately,

15



no wait for timer. If get three duplicate ACKS in a row,

assume packet loss, resend. Drop ssthresh to half and

start slow-start again

• retransmission timeout – halve sshthreash and restart

slow-start

• When to retransmit

◦ If packet lost, then will receive duplicate ACK on next

transmission

◦ If get three identical ACKs, probably means packet

lost, resend

◦ Why not two? Because if packets arrive out of order

16



can also cause duplicate ACK

• TCP Reno (v3) added fast recovery

set sshthread to cwnd+3 because of triple ack

• TCP New Reno

17



TCP Options

• One-byte

◦ End of option – end of all options. Only one allowed

(not always needed?)

◦ No operation – for padding

• Multi-byte

◦ MSS maximum segment size (only in initial SYN

packet)

Byte1: 2, Byte 2: len=4, max size=2 bytes

◦ RFC1323 –PAWS, window scaling factor, specify

18



larger transfer size as on long-latency high-bandwidth

connections can end up idle a lot waiting for ACK

Scales the window size by value

Byte 1: 3, Byte 2: Len=3, Scale factor=1 byte

◦ Timestamp: used to calculate round-trip time. Leaks

info? Send along timestamp when you send, other side

keeps that and returns it (as echo) with the relevant

ACK.

10 bytes long Byte 1: 8, Byte 2: Len=10,

Timestamp=4 bytes, Echo=4 bytes

◦ RFC1106 allows selective resend – if lost packet in

19



long stream, instead of sending all, just resend missing

◦ Fast connections sequence can wrap quickly.

20



Security Issues

• SYN Flood attack – Denial of service – spoof IP address,

send lots of spurious SYNs followed by ACK, tie up lots

of resources

Spoof, because responds to wrong address which just

ignores. Causes lots of half-open connections

One solution is SYN cookies – (pick special sequence

that allow throwing out connection info but able to

reconstruct if an ACK comes back).

• Connection hijacking – guess a proper sequence number

21



and forge a packet that looks like it should be next. If you

can also take down the real IP (DOS?) can take over

the connection Helps to have good random sequence

numbers

• TCP veto – inject packet with sequence and payload of

next expected. That way when the real actual next one

comes in, it will be silently dropped as a duplicate

• NMAP port scanning – send packets and find if

connections are open, determine host system. Christmas

Tree packets

22



Find out host? options supported, sequence numbers.

Also can find out uptime of system as timestamps from

extension usually aren’t reset each time.

• Martian packets – packets with a source of a reserved

network found on routed internet

• UDP broadcast storm/amplification attack – broadcast

bad packet to 10000 machines, all reply at once with

error

23



Making things faster

• Offload engines

24



Proposed Replacements

• T/TCP – Transactional TCP.

To send one small message (w/o UDP) can require up

to 9 packets. (handshake, data transfer, shutdown)

Instead, in the initial packet put SYN, DATA, AND FIN.

The small message done in 3 packets.

• SCTP – stream control transmission protocol. More

complex

four-way handshake (why? prevent SYN flood attacks)

25



• QUIC – from google

Over UDP for now (NATs won’t route protocols they

don’t know)

Used by Youtube, Google, etc. with Chromium

Head of Line problem with TCP

Single-way handshake if version match, otherwise has to

negotiate.

Encrypted

Once encrypted connection set up once, assumed still

there and so sends single HELLO packet followed by

data.

26



Sends redundancy in packets which can be used with

XOR to reconstruct missing packets. (but shown not to

help much?)

27


