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Announcements

• HW#4 was due

• HW#5 will be posted. You’ll have 2 weeks due to

midterm/fall break

• Midterm Tuesday

• Out of town Tues+Wed for MEMSYS’17. Plan to be

back by class on Thursday, will send e-mail if something

goes wrong.
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Midterm Review

• Can have one page (8.5” x 11”) of notes if you want,

otherwise closed everything. I do not think you should

need a calculator.

• Mostly short answer questions. No long coding exercises

or protocol memorization. Maybe some sockets code,

but analyzing it not writing it.

• Know the OSI layers and what each one is for.

• Know at a high level the following protocols:

◦ WWW/http
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◦ e-mail

◦ DNS

• UDP + TCP

◦ Know the 3-way handshake

◦ Know the tradeoffs between UDP and TCP

◦ Why does DNS use UDP

◦ Why do webservers use TCP
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Flow Control

• How much data can be sent before receiving an ACK

• Extreme – just 1 byte. Inefficient (overhead). Also

modern systems, a fibre line coast to coast a long time

to ACK packet

• Sliding Window Protocol

• Circular buffer (see figure)

• Size of the sliding window: how many outstanding

there can be. Once it gets ACKed, can slide window.

grow/shrink size of window.
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Sent+ACKed Sent, no ACK yet Can be Sent Now Empty

10 11 12 13 14 15 16 17 18 19 20 21

⇑
Next
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Error Correction

• Ways to Catch Errors

◦ Checksum

◦ Acknowledgement

◦ Time-out

• Example types of Errors

◦ Corrupted packet

SEQ 1401 + 200 bytes, SEQ 1601+200, SEQ

1801+200 sent

Last one corrupted receiver only acks through
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ACK=1601

Eventually timeout, and sender will retransmit

◦ Lost packet

Same as previous

◦ Duplicate packet (how can happen? a timeout happens

and is resent just before ACK gets in)

TCP discards packets with duplicate SEQ

◦ Out-of-order packet

Do not ACK packet until preceding ones make it.

For performance can queue up out of order ones so

they don’t have to be resent
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◦ Lost ACK

ACKs cumulative, so if the next packet causes an ACK

then it doesn’t matter. Otherwise a timeout?
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TCP Timer Management

• What should the timer value be? Too short, send extra

packets, too long and takes long time to notice lost

packets.

• On the fly measures round trip time. (RTT) When

send segment, start timer, updates. Various algorithms.

Often 2 or 4x

• Connection Timer – send SYN. If no response in time,

reset
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• Retransmission Timer – retransmit data if no ACK

• Delayed ACK timer – if send a packet, tag an ACK

along if timer expires and no outgoing data, have to

send stanadlone ACK

• Persist Timer – solve deadlock where window was 0, so

waiting, and missed the update that said window was

open again.

Sends special probe packet. Keep trying every 60s?

• Keepalive Timer – if connection idle for a long time,

sends probe to make sure still up
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• FIN WAIT 2 Timer – avoid waiting in this state forever

if other side crashes

• TIME WAIT TIMER – used in TIME WAIT to give

other side time to finish before CLOSE
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TCP Congestion Control

• Fast network feeding small receiver (flow control?)

• Slow network feeding big receiver (problem on sending

side, lose packets, congestion control)

• Two windows, receiver window (RWND) looked at

previously, and congestion window (CWND) (kept

locally)

• Amount can send is the minimum of the two windows

• Setup

◦ Congestion window set to max segment size
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◦ Send one max segment, arm timer

◦ If ACK received before timer goes off, good. Double

the size.

◦ Repeat, exponential growth. Called ”slow start”

◦ “internet (?)” has a limit where it stops exponential

and moves to linear growth

◦ eventually hit receiver window size and stop

• Changed over the years.

• Initial implementation no congestion control, not needed

(not that much traffic)

• After 8 years (1980s) introduced by Van Jacobson (Van
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is his first name) – internet facing “congestion collapse”

– would send as fast as possible, packets would be

dropped, hosts retransmit, even more congestion

• Usually assume corrupted packets are rate, at least on

wired. Wireless. More lost packets, so shouldn’t slow

down but maybe try harder in congestion

14



TCP Tahoe

• TCP Tahoe (v2) (BSD 4.2 1988) added congestion

avoidance, fast retransmit (Van Jacobsen)

• Slow start – probing bandwidth with few rounds.

• CWND set to 1 and exponentially increases with each

ACK until hits ssthresh

• congestion avoidance – slow probing but rapid respond

to congestion

• AIMD additive increase multiple decrease.

• Fast retransmit– transmitting lost packets immediately,
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no wait for timer. If get three duplicate ACKS in a row,

assume packet loss, resend. Drop ssthresh to half and

start slow-start again

• retransmission timeout – halve sshthreash and restart

slow-start

• When to retransmit

◦ If packet lost, then will receive duplicate ACK on next

transmission

◦ If get three identical ACKs, probably means packet

lost, resend

◦ Why not two? Because if packets arrive out of order
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can also cause duplicate ACK

• TCP Reno (v3) added fast recovery

set sshthread to cwnd+3 because of triple ack

• TCP New Reno

17



TCP Options

• One-byte

◦ End of option – end of all options. Only one allowed

(not always needed?)

◦ No operation – for padding

• Multi-byte

◦ MSS maximum segment size (only in initial SYN

packet)

Byte1: 2, Byte 2: len=4, max size=2 bytes

◦ RFC1323 –PAWS, window scaling factor, specify
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larger transfer size as on long-latency high-bandwidth

connections can end up idle a lot waiting for ACK

Scales the window size by value

Byte 1: 3, Byte 2: Len=3, Scale factor=1 byte

◦ Timestamp: used to calculate round-trip time. Leaks

info? Send along timestamp when you send, other side

keeps that and returns it (as echo) with the relevant

ACK.

10 bytes long Byte 1: 8, Byte 2: Len=10,

Timestamp=4 bytes, Echo=4 bytes

◦ RFC1106 allows selective resend – if lost packet in
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long stream, instead of sending all, just resend missing

◦ Fast connections sequence can wrap quickly.
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Security Issues

• SYN Flood attack – Denial of service – spoof IP address,

send lots of spurious SYNs followed by ACK, tie up lots

of resources

Spoof, because responds to wrong address which just

ignores. Causes lots of half-open connections

One solution is SYN cookies – (pick special sequence

that allow throwing out connection info but able to

reconstruct if an ACK comes back).

• Connection hijacking – guess a proper sequence number
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and forge a packet that looks like it should be next. If you

can also take down the real IP (DOS?) can take over

the connection Helps to have good random sequence

numbers

• TCP veto – inject packet with sequence and payload of

next expected. That way when the real actual next one

comes in, it will be silently dropped as a duplicate

• NMAP port scanning – send packets and find if

connections are open, determine host system. Christmas

Tree packets
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Find out host? options supported, sequence numbers.

Also can find out uptime of system as timestamps from

extension usually aren’t reset each time.

• Martian packets – packets with a source of a reserved

network found on routed internet

• UDP broadcast storm/amplification attack – broadcast

bad packet to 10000 machines, all reply at once with

error
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Making things faster

• Offload engines

24



Proposed Replacements

• T/TCP – Transactional TCP.

To send one small message (w/o UDP) can require up

to 9 packets. (handshake, data transfer, shutdown)

Instead, in the initial packet put SYN, DATA, AND FIN.

The small message done in 3 packets.

• SCTP – stream control transmission protocol. More

complex

four-way handshake (why? prevent SYN flood attacks)
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• QUIC – from google

Over UDP for now (NATs won’t route protocols they

don’t know)

Used by Youtube, Google, etc. with Chromium

Head of Line problem with TCP

Single-way handshake if version match, otherwise has to

negotiate.

Encrypted

Once encrypted connection set up once, assumed still

there and so sends single HELLO packet followed by

data.
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Sends redundancy in packets which can be used with

XOR to reconstruct missing packets. (but shown not to

help much?)
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