ECE 435 — Network Engineering
Lecture 10

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

28 September 2017


http://web.eece.maine.edu/~vweaver

Announcements

o HW+#4 was due

e HW=5 will be posted. You'll have 2 weeks due to
midterm /fall break

e Midterm Tuesday

e Out of town Tues+Wed for MEMSYS'17. Plan to be
back by class on Thursday, will send e-mail if something
goes wrong.

-y 1



Midterm Review

e Can have one page (8.5" x 11") of notes if you want,
otherwise closed everything. | do not think you should
need a calculator.

e Mostly short answer questions. No long coding exercises
or protocol memorization. Maybe some sockets code,

but analyzing it not writing it.

e Know the OSI layers and what each one is for.

e Know at a high level the following protocols:
o WWW /http

-y 2



o e-mail

o DNS

UDP + TCP

o Know the 3-way handshake

o Know the tradeoffs between UDP and TCP
o Why does DNS use UDP

o Why do webservers use TCP



Flow Control

e How much data can be sent before receiving an ACK

e Extreme — just 1 byte. Inefficient (overhead). Also
modern systems, a fibre line coast to coast a long time
to ACK packet

e Sliding Window Protocol

e Circular buffer (see figure)

e Size of the sliding window: how many outstanding
there can be. Once it gets ACKed, can slide window.
grow /shrink size of window.

-y 4



Sent+ACKed Sent, no ACK yet Can be Sent Now Empty
10 | 11 12 13 14 | 15 [ 16 | 17 | 18 | 19 | 20 | 21
f
Next




Error Correction

e Ways to Catch Errors
o Checksum
o Acknowledgement
o Time-out
e Example types of Errors
o Corrupted packet
SEQ 1401 + 200 bytes, SEQ 16014200, SEQ

18014200 sent
Last one corrupted receiver only acks through

-y 6



ACK=1601
Eventually timeout, and sender will retransmit

o Lost packet
Same as previous

o Du
ang
TC

vlicate packet (how can happen? a timeout happens
is resent just before ACK gets in)

P discards packets with duplicate SEQ

o Qut-of-order packet

Do
For

not ACK packet until preceding ones make it.
performance can queue up out of order ones so

they don't have to be resent



o Lost ACK

ACKs cumulative, so if the next packet causes an ACK
then it doesn’'t matter. Otherwise a timeout?



TCP Timer Management

e What should the timer value be? Too short, send extra
packets, too long and takes long time to notice lost
packets.

e On the fly measures round trip time. (RTT) When

send segment, start timer, updates. Various algorithms.
Often 2 or 4x

e Connection Timer — send SYN. If no response in time,
reset

-y 5



e Retransmission Timer — retransmit data if no ACK

e Delayed ACK timer — if send a packet, tag an ACK
along if timer expires and no outgoing data, have to
send stanadlone ACK

e Persist Timer — solve deadlock where window was 0, so
waiting, and missed the update that said window was
open again.

Sends special probe packet. Keep trying every 60s?

o Keepalive Timer — if connection idle for a long time,
sends probe to make sure still up

-y 10



e FIN_WAIT_2 Timer — avoid waiting in this state forever
if other side crashes

o TIME_WAIT_TIMER — used in TIME_WAIT to give
other side time to finish before CLOSE

/Y 11



TCP Congestion Control

e Fast network feeding small receiver (flow control?)

e Slow network feeding big receiver (problem on sending
side, lose packets, congestion control)

e Two windows, receiver window (RWND) looked at
previously, and congestion window (CWND) (kept
locally)

e Amount can send is the minimum of the two windows

e Setup
o Congestion window set to max segment size

/Y 12



o Send one max segment, arm timer
o If ACK received before timer goes off, good. Double
the size.
o Repeat, exponential growth. Called "slow start”
o “internet (7)" has a limit where it stops exponential
and moves to linear growth
o eventually hit receiver window size and stop
e Changed over the years.
e Initial implementation no congestion control, not needed
(not that much traffic)
e After 8 years (1980s) introduced by Van Jacobson (Van

-y 13



is his first name) — internet facing “congestion collapse”
— would send as fast as possible, packets would be
dropped, hosts retransmit, even more congestion

e Usually assume corrupted packets are rate, at least on
wired. Wireless. More lost packets, so shouldn't slow
down but maybe try harder in congestion

-y 14



TCP Tahoe

e TCP Tahoe (v2) (BSD 4.2 1988) added congestion
avoidance, fast retransmit (Van Jacobsen)

e Slow start — probing bandwidth with few rounds.

e CWND set to 1 and exponentially increases with each
ACK until hits ssthresh

e congestion avoidance — slow probing but rapid respond
to congestion

e AIMD additive increase multiple decrease.

e Fast retransmit— transmitting lost packets immediately,

-y 15



no wait for timer. If get three duplicate ACKS in a row,
assume packet loss, resend. Drop ssthresh to half and
start slow-start again
e retransmission timeout — halve sshthreash and restart
slow-start
e When to retransmit
o If packet lost, then will receive duplicate ACK on next
transmission
o If get three identical ACKs, probably means packet
lost, resend
o Why not two? Because if packets arrive out of order

-y 16



can also cause duplicate ACK
e TCP Reno (v3) added fast recovery
set sshthread to cwnd—+3 because of triple ack

e TCP New Reno

17



TCP Options

e One-byte
o End of option — end of all options. Only one allowed
(not always needed?)
o No operation — for padding
e Multi-byte
o MSS maximum segment size (only in initial SYN
packet)
Bytel: 2, Byte 2: len=4, max size=2 bytes
o RFC1323 —-PAWS, window scaling factor, specify

/Y 18



larger transfer size as on long-latency high-bandwidth
connections can end up idle a lot waiting for ACK
Scales the window size by value
Byte 1: 3, Byte 2: Len=3, Scale factor=1 byte
o Timestamp: used to calculate round-trip time. Leaks
info? Send along timestamp when you send, other side
keeps that and returns it (as echo) with the relevant
ACK.
10 bytes long Byte 1: 8, Byte 2: Len=10,
imestamp=4 bytes, Echo=4 bytes
o RFC1106 allows selective resend — if lost packet in

/Y 19



long stream, instead of sending all, just resend missing
o Fast connections sequence can wrap quickly.

/Y 20



Security Issues

e SYN Flood attack — Denial of service — spoof |IP address,
send lots of spurious SYNs followed by ACK, tie up lots
of resources
Spoof, because responds to wrong address which just
ignores. Causes lots of half-open connections
One solution is SYN cookies — (pick special sequence
that allow throwing out connection info but able to
reconstruct if an ACK comes back).

e Connection hijacking — guess a proper sequence number

-y 21



and forge a packet that looks like it should be next. If you
can also take down the real IP (DOS?) can take over
the connection Helps to have good random sequence
numbers

e TCP veto — inject packet with sequence and payload of
next expected. That way when the real actual next one
comes in, it will be silently dropped as a duplicate

e NMAP port scanning — send packets and find if
connections are open, determine host system. Christmas
Tree packets

-y 2



Find out host? options supported, sequence numbers.
Also can find out uptime of system as timestamps from
extension usually aren’t reset each time.

e Martian packets — packets with a source of a reserved
network found on routed internet

e UDP broadcast storm/amplification attack — broadcast
bad packet to 10000 machines, all reply at once with
error

-y 23



Making things faster

e Offload engines

24



Proposed Replacements

e T/TCP — Transactional TCP.
o send one small message (w/o UDP) can require up

to 9 packets. (handshake, data transfer, shutdown)

Instead, in the initial packet put SYN, DATA, AND FIN.
The small message done in 3 packets.

e SCTP — stream control transmission protocol. More
complex
four-way handshake (why? prevent SYN flood attacks)

-y 25



e QUIC — from google
Over UDP for now (NATs won’t route protocols they
don't know)
Used by Youtube, Google, etc. with Chromium
Head of Line problem with TCP
Single-way handshake if version match, otherwise has to
negotiate.
Encrypted
Once encrypted connection set up once, assumed still
there and so sends single HELLO packet followed by
data.

-y 26



Sends redundancy in packets which can be used with
XOR to reconstruct missing packets. (but shown not to
help much?)

-y 21



