
ECE 435 – Network Engineering
Lecture 2

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

6 September 2018

http://web.eece.maine.edu/~vweaver

Announcements

• Homework 1 will be posted.

Will be on website, will announce via mainestreet e-mail

Due next Thursday (via e-mail)

1

Socket Programming

• BSD sockets – Berkeley UNIX, 1983

• Sort of at the transport layer, we are skipping ahead here

• Going over it now as it will be HW#1

• Will reuse the code throughout the semester

2

Client and Server

• Can you be both?

3

Low level C programming

• Why C code?

Close to hardware.

Always know what’s going on.

Performance.

I like it.

• Why not C-code?

Hard to code

Security

4

Small C Program

What do all the parts do?

argc/argv handle command line arguments.

what are sycalls?

How does printf work?

#include <stdio.h>

int main(int argc , char **argv) {

printf("Hello world\n");

return 0;

}

5

Opening a socket for listening

Explain system calls, and file descriptors.

Can use man socket to show socket manpage, etc.

/* Open a socket to listen on */

/* AF_INET means an IPv4 connection (others are possible) */

/* SOCK_STREAM means reliable two -way connection (TCP) */

/* last argument is protocol subset. We leave at zero */

int socket_fd = socket(AF_INET , SOCK_STREAM , 0);

if (socket_fd <0) {

fprintf(stderr ,"Error opening socket! %s\n",

strerror(errno));

}

6

Address and Port

• More layer violations

• While in theory generic, we are coding to TCP/IP here

• Address is typically the global IP address

can run on same machine with localhost

• Port is how you handle multiple applications on same

machine, based on the “port” it can map back to which

application (the OS has a table)

• On TCP/IP limited to a 16-bit port number (65536)

7

Setting up Address

htons() has to do with endianess

memset() be sure to get order of arguments right!

C structures and how they work

Casting, lets use fake pointer type for all types of

connections and cast to right one.

struct sockaddr_in server_addr;

/* Set up the server address to listen on */

memset (& server_addr ,0,sizeof(struct sockaddr_in));

server_addr.sin_family=AF_INET;

/* Convert the port we want to network byte order (short) */

server_addr.sin_port=htons(port);

8

struct sockaddr_in {

sa_family_t sin_family;

in_port_t sin_port;

struct in_addr sin_addr;

};

struct in_addr {

uint32_t s_addr;

}

9

bind() system call

Gives the socket an address.

Since we’re a server and listening we don’t have to give an

address we use 0.0.0.0 (set by memset) which means to

listen on all networks.

/* Bind to the port */

if (bind(socket_fd , (struct sockaddr *) &server_addr ,

sizeof(server_addr)) <0) {

fprintf(stderr ,"Error binding! %s\n", strerror(errno));

}

10

listen() system call

Sets up a data structure to hold pending incoming

connections in case more than one come in at once.

/* Tell the server we want to listen on the port */

/* Second argument is backlog , how many pending connections can */

/* build up */

listen(socket_fd ,5);

11

accept() system call
/* Call accept to create a new file descriptor for an incoming */

/* connection. It takes the oldest one off the queue */

/* We’re blocking so it waits here until a connection happens */

client_len=sizeof(client_addr);

new_socket_fd = accept(socket_fd ,

(struct sockaddr *)& client_addr ,& client_len);

if (new_socket_fd <0) {

fprintf(stderr ,"Error accepting! %s\n",strerror(errno));

}

12

read() system call

Can also use recv() if need extra options.
/* Someone connected! Let’s try to read BUFFER_SIZE -1 bytes */

memset(buffer ,0, BUFFER_SIZE);

n = read(new_socket_fd ,buffer ,(BUFFER_SIZE -1));

if (n==0) {

fprintf(stderr ,"Connection to client lost\n\n");

}

else if (n<0) {

fprintf(stderr ,"Error reading from socket %s\n",

strerror(errno));

}

/* Print the message we received */

printf("Message from client: %s\n",buffer);

13

write() system call

Can also use send() if need extra options.

/* Print the message we received */

printf("Message from client: %s\n",buffer);

/* Send a response */

n = write(new_socket_fd ,"Got your message , thanks!" ,25);

if (n<0) {

fprintf(stderr ,"Error writing. %s\n",

strerror(errno));

}

14

close() system call
printf("Exiting server\n\n");

/* Try to avoid TIME_WAIT */

// sleep (1);

/* Close the sockets */

close(new_socket_fd);

close(socket_fd);

15

Server Notes

• What if you don’t want to exit after, but instead loop?

• What happens if you have more than one incoming

connection?

• poll() vs busy wait?

• What if you want to handle multiple connections at

once?

16

Client Code

17

socket() again
/* Open a socket file descriptor */

/* AF_INET means an IP network socket , not a local (AF_UNIX) one */

/* There are other types you can open too */

/* SOCK_STREAM means reliable two -way byte stream (TCP) */

/* last argument is protocol subset. We leave at zero */

socket_fd = socket(AF_INET , SOCK_STREAM , 0);

if (socket_fd <0) {

fprintf(stderr ,"Error socket: %s\n",

strerror(errno));

}

18

get host address / port

Note for this example using ”localhost”.

This is a special case, 127.0.0.1 on IPv4.

Could put in a host name, this gets looked up via DNS.

Or manually put in an IP address.

/* Look up the server info based on its name */

server=gethostbyname(DEFAULT_HOSTNAME);

if (server ==NULL) {

fprintf(stderr ,"ERROR! No such host!\n");

exit (0);

}

/* clear out the server_addr structure and set some fields */

19

/* Set it to connect to the address and port of our server */

memset (& server_addr ,0,sizeof(server_addr));

server_addr.sin_family=AF_INET;

memcpy(server ->h_addr ,& server_addr.sin_addr.s_addr ,

server ->h_length);

/* port should be in "network byte order" (big -endian) so convert */

/* htons = host to network [byte order] short */

server_addr.sin_port=htons(port);

20

connect system call
/* Call the connect system call to actually connect to server */

if (connect(socket_fd ,(struct sockaddr *) &server_addr ,

sizeof(server_addr)) < 0) {

fprintf(stderr ,"Error connecting! %s\n",

strerror(errno));

}

21

wait for response with read()
/* Prompt for a message */

printf("Please enter a message to send: ");

memset(buffer ,0, BUFFER_SIZE);

/* Read message */

fgets(buffer ,BUFFER_SIZE -1,stdin);

/* Write to socket using the "write" system call */

n = write(socket_fd ,buffer ,strlen(buffer));

if (n<0) {

fprintf(stderr ,"Error writing socket! %s\n",

strerror(errno));

}

22

wait for response with read()
/* Clear buffer and read the response from the server */

memset(buffer ,0, BUFFER_SIZE);

n = read(socket_fd ,buffer ,BUFFER_SIZE -1);

if (n<0) {

fprintf(stderr ,"Error reading socket! %s\n",

strerror(errno));

}

/* Print the response we got */

printf("Received back from server: %s\n\n",buffer);

23

close again
/* All finished , close the socket/file descriptor */

close(socket_fd);

24

Notes on Homework

• Make the server loop forever until a string comes in.

• How do you loop forever?

• How do you compare with a string? Can you use ==

• Be careful with strcmp()

• You might even want to use strncmp()

• Comment your code!

25

• Try to fix all compiler warnings!

26

TIME WAIT

• Can get in this state if close happens wrong

• OS is waiting to make sure all packets are in from old

connection before letting a new one happen to same port

• Might take up to 60s

• Ways around it? Wait longer before closing?

SO REUSEADDR option to socket?

27

Other Languages

• Python

◦ Low-level interface a lot like C one

◦ Higher level sockserver interface

• Java

◦ More abstraction

◦ java.net, socket=newsocket(addr,port);

28

