
ECE 435 – Network Engineering
Lecture 8

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

27 September 2018

http://web.eece.maine.edu/~vweaver

Announcements

• HW#3 due

• HW#4 will be posted

1

HW#2 C Review

• Mostly C issues

◦ Time Wait

◦ don’t ignore compiler warnings!

◦ The biggest issue if your browser isn’t displaying things

is the wrong Content-length:

If you send less data than you say you will, it will wait

forever for it, or else give a ”connection reset” if you

close the connection.

◦ Be sure you read everything the browser is sending

2

(Either big enough buffer, or repeat in loop reading it

all). If you send a response before it is done sending

it can confuse things. How can you hold an arbitrary

size header? malloc()? Do you want to?

◦ Be sure to drop leading / in a URL

◦ sprintf() does not concatenate

read() also does not concatenate

◦ ctime sticks an extra linefeed in things

◦ sizeof() operator. char temp[1024]; what is

sizeof(temp)? hint: it’s not the same as strlen()

◦ have to read/write in loop if file sending is bigger than

3

your file buffer

◦ just don’t take addresses with ampersand randomly

◦ Can you use strcat() with binary file? why not?

Can binary files have zeros?

◦ error checking!

◦ Many crashed if I requested the README file. Have to

handle unexpected input from user. (in this case, no

file extension)

◦ include proper header file. man can tell you

◦ Difference between ’ ’ and ” ”

◦ sprintf() 300 bytes into 100 byte array (snprintf?)

4

◦ Only reading a small amount of bytes (100) when your

file is bigger.

• Header and time format. There is a particular format,

some browsers will ignore it, others not.

• Also depends on browser. For example, if have wrong

content size, lynx just runs with it. wget tries forever.

Other browsers give a connection reset error?

• Can use wget -S to see the headers you are sending

• If really HTTP/1.1 you should keep connection open,

multiple requests on one connection.

• If you use firefox you’ll see it might also request

5

favico.ico? Why? What should you return (assuming

the file doesn’t exist?) 404.

• Time wait

• Something Cool

6

HW#4 Notes

• Decoding a hexdump
hexdump -C ece435_lec08.pdf

00000000 25 50 44 46 2d 31 2e 35 0a 25 d0 d4 c5 d8 0a 39 |%PDF-1.5.%.....9|

00000010 20 30 20 6f 62 6a 0a 3c 3c 0a 2f 4c 65 6e 67 74 | 0 obj.<<./Lengt|

00000020 68 20 33 37 33 20 20 20 20 20 20 20 0a 2f 46 69 |h 373 ./Fi|

00000030 6c 74 65 72 20 2f 46 6c 61 74 65 44 65 63 6f 64 |lter /FlateDecod|

00000040 65 0a 3e 3e 0a 73 74 72 65 61 6d 0a 78 da 9d 52 |e.>>.stream.x..R|

• First column is offset into the file or packet (usually in

hex).

• The next set of columns are the raw bytes, in hex.

• The last column is the ASCII char equivalent of the raw

data. a ‘.’ often indicates non-printable ASCII.

7

The Transport Layer

OSI TCP/IP

7 Application Application

6 Presentation

5 Session

4 Transport Transport

3 Network Internet

2 Data Link Host-to-network

1 Physical Host-to-network

8

The Transport Layer

• Responsible for reliable point-to-point data transport

independent of whatever lies beneath.

• Provide process-to-process connectivity, and per-

segment error control and per-flow reliability, as well

as rate control

• Can be more reliable than underlying network

• TCP (Transmission Protocol Layer)

◦ connection oriented

◦ stateful

9

◦ per-flow reliability and rate control

• UDP (User Datagram Protocol)

◦ stateless

◦ connectionless

• the “socket” is the API from old homework

10

The Transport Layer

• Terminology: application = process, data-transfer-unit

is a segment, traffic is a flow

• addressing – each process needs a unique ID. For

internet, this is the “port” number (16-bit)

• Rate control

– Flow control – between source and destination

– Congestion control – between source and network

None in link layer because only one hop?

11

Can be done by sender or network

• Real time requirements – things like video and audio

need extra info such as timestamp, loss rate, etc. So

hard to do with raw TCP/UDP

12

Unreliable, Connectionless – UDP

• User Datagram Protocol (RFC 768)

• Just an 8-byte header tacked onto the data packet

• No reliability, no rate control, stateless

If you want these things you have to add them at higher

layer

• Error control optional

• Why none of those things? All add overhead.

◦ Used when want packets to get through quickly.

◦ Don’t care about re-transmits, better for real-time

13

(VOIP, streaming?)

◦ Easy to implement, for low-level stuff like bootp/dhcp

◦ Good for broadcasting

• Provides process-to-process communication and per-

segment error control

• Can send UDP packets to a destination without having

to set up a connection first

14

UDP Header

2 bytes 2 bytes

Source Port Destination Port
Packet Length Checksum

• 16-bits: source port (optional, says where it is coming

from in case need to respond, 0 if unused)

• 16-bits: destination port

• 16-bits length (in bytes, includes the header, min 8)

What’s the maximum size?

• 16-bits checksum (optional, see below)

• data

15

Port Numbers

• 16-bit, so 64k of them

• Can map to any you want, but there are certain well-

known ones. Look in /etc/services. For example.

WWW is 80/tcp. DNS is 53/udp

• On most operating systems, ports below 1024 require

root (why?)

• Source/destination addr + source/destination port +

protocol ID (TCP or UDP) is a socket pair (or 5-tuple)

is 104 bits that uniquely identify a flow for IPv4. IPv6

16

has a specific field for this

17

UDP checksum

• Find info on this in RFC768 and RFC1071

• If set to zero, ignored

• Receiver drops invalid checksums (does not request

resend)

• Algorithm

◦ 1s complement of sum all 16-bit words in header and

payload

padded with 0s to be multiple of 16-bits

◦ Also added to the checksum is a 96-bit pseudo header

18

that has source IP, dest IP, (split in half) protocol,

length (padded to 16). Enables receiver to catch

problems with there to (delivered to wrong machine)

– why could this be a problem?

• What happens if checksum is 0? entered as 0xffff

What happens if it was 0xffff? Remember in ones

complement 0xffff is negative zero.

• Checksum considered mandatory on IPv6 because IPv6

header not checksummed

• Why would you ever leave checksum out? Takes time to

compute, might care about latency over errors [video?]

19

UDP checksum example

• 0x0000: 8875 563d 2a80 0030 18ab 1c39 86dd 6002 .uV=*..0...9..‘.

0x0010: 2618 0031 1140 2610 0048 0100 08da 0230 &..1.@&..H.....0

0x0020: 18ff feab 1c39 2001 4860 4860 0000 00009..H‘H‘....

0x0030: 0000 0000 8844

UDP:

e239 0035 0031 9c0e 8657D.9.5.1...W

0x0040: 0120 0001 0000 0000 0001 0377 7777 0465www.e

0x0050: 7370 6e03 636f 6d00 0001 0001 0000 2910 spn.com.......).

0x0060: 0000 0000 0000 00

• 16-bit sum of “virtual header” (two IPv6 addresses,

protocol (0x0011) and length of udp packet/header

(0x0031)) is 0x29f8c

• 16-bit sum of UDP header leaving off checksum is 0xe29f

20

• 16-bit sum of UDP data is 0x2e1c0

• Add them get 0x6 63eb

• It’s a 16-bit sum, so add 0x6 + 0x63eb = 0x63f1

ones complement is 0x9c0e, which matches the UDP

checksum field

21

OS UDP

• When listening on UDP, sets up a queue

• Network stack decodes and gets UDP, finds port, looks

to see if any processes listening on that port

• If so, adds to queue

• If not, sends an ICMP “port unreachable” error message

• All UDP messages to that port, no matter who sends

them, end up in the same queue.

22

Writing UDP sockets code

• Use SOCK DGRAM rather than SOCK STREAM

• Can skip the listen/accept state, as no connection is

there. Just receive the packets as they come in.

s o c k e t f d = s o c k e t (AF INET , SOCK DGRAM, 0) ;
b i n d (s o c k e t f d , (s t r u c t s o c k a d d r ∗) &s e r v e r a d d r ,

s i z e o f (s e r v e r a d d r)) ;
r e c v f r o m (s o c k e t f d , b u f f e r , (BUFFER SIZE−1) ,0 ,

(s t r u c t s o c k a d d r ∗) &c l i e n t a d d r , & c l i e n t l e n) ;
// use r e c v f r o m as i t s t o r e s the incoming a d d r e s s
s e n d t o (s o c k e t f d , b u f f e r , s t r l e n (b u f f e r) , 0 ,

(s t r u c t s o c k a d d r ∗)& c l i e n t a d d r , c l i e n t l e n) ;
// s e n d t o to respond , as we don ’ t have a c o n n e c t i o n open

c l i e n t :
use s e n d t o (aga in , no open c o n n e c t i o n)

23

Common UDP Services

• Obsolete: echo/discard/users/daytime/quote/chargen

• Nameserver

• bootp/tftp

• ntp (network time protocol)

• snmp

24

UDP real-time

• Real-Time Protocol (RFC1889)

• On top of UDP, multiplexes

• data streams

• timestamps

25

