
ECE 435 – Network Engineering
Lecture 2

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

28 January 2021

http://web.eece.maine.edu/~vweaver

Announcements

• Homework 1 will be posted.

Will be on website, will announce via mainestreet e-mail

Due next Thursday (via e-mail)

1

Homework #1

• Write a client and a server

• Server waits for incoming network connection.

When one comes in it is opened and it listens for text.

It takes that text back, interprets it, sends a response.

• Client opens a connection to server. Takes input from

the keyboard and sends it to server, waits for response,

and prints response.

• How would you code this up?

2

Homework #1 – Hardware Notes

• Assume you have a Linux machine

• Can also do this on OSX if you have compiler/etc

installed

• Also in windows, maybe if you install the new Linux

subsystem for it? Or run Linux in a VM?

• If you can’t do any of those things, I can provide an

account you can ssh into to do the homework.

3

Socket Programming

• BSD sockets – Berkeley UNIX, 1983

• Sort of at the transport layer, we are skipping ahead here

• We’ll use these for Homework #1

• Will reuse the code throughout the semester

4

Client and Server

• Can you be both?

5

Low level C programming

• Why C code?

◦ Close to hardware.

◦ Always know what’s going on.

◦ Performance.

◦ I like it.

• Why not C-code?

◦ Hard to code

◦ Security

6

Small C Program

What do all the parts do?

argc/argv handle command line arguments.

what are sycalls?

How does printf work?

#include <stdio.h>

int main(int argc , char **argv) {

printf("Hello world\n");

return 0;

}

7

File descriptors and system calls

• At the lowest level, everything on UNIX/Linux is a “file”

(or is supposed to be)

• Files are tracked per-process, with an integer value file

descriptor acting as a sort of reference.

• Your process starts out with three open files, STDIN (0),

STDOUT (1), STDERR (2)

• You can create more file descriptors with various system

calls. open() is a common one. Returns -1 on error.

8

More File descriptors and system calls

• Once you have a file descriptor, use syscalls such as

read(), write(), ioctl() to do I/O

• You can close() when you are done

• Magic of Linux/UNIX is not just disk files, but all devices

act as files and same syscalls work on them.

• Just to be difficult though the socket interface does

things slightly differently.

9

Socket Syscalls

remember: for docs run man socket etc..

• SOCKET – create a new endpoint

• BIND – associate an address with a socket

• LISTEN – announce willing to accept connections

• ACCEPT – passively establish incoming connection

• CONNECT – actively attempt to establish connection

• SEND – send data

• RECEIVE – receive data

• CLOSE – close connection

10

Opening a socket for listening
/* Open a socket to listen on */

/* AF_INET means an IPv4 connection (others are possible) */

/* SOCK_STREAM means reliable two -way connection (TCP) */

/* last argument is protocol subset. We leave at zero */

int socket_fd = socket(AF_INET , SOCK_STREAM , 0);

if (socket_fd <0) {

fprintf(stderr ,"Error opening socket! %s\n",

strerror(errno));

}

11

Address and Port

• More layer violations

• While in theory generic, we are coding to TCP/IP here

• Address is typically the global IP address

can run on same machine with localhost

• Port is how you handle multiple applications on same

machine, based on the “port” it can map back to which

application (the OS has a table)

• On TCP/IP limited to a 16-bit port number (65536)

12

Setting up Address

• htons() has to do with endianess (network [big-endian]

vs host [probably little])

• memset() to clear memory to zero, be sure to get order

of arguments right!

• C structures and how they work

• Casting, lets use fake pointer type for all types of

connections and cast to right one.

13

/* for reference , these live in header file */

struct sockaddr_in {

sa_family_t sin_family;

in_port_t sin_port;

struct in_addr sin_addr;

};

struct in_addr {

uint32_t s_addr;

};

struct sockaddr_in server_addr;

/* Set up the server address to listen on */

memset (& server_addr ,0,sizeof(struct sockaddr_in));

server_addr.sin_family=AF_INET;

/* Convert the port we want to network byte order (short) */

server_addr.sin_port=htons(port);

14

bind() system call

• bind() gives the socket an address.

• Since we’re a server and listening we don’t have to give

an address

• We use 0.0.0.0 (set by memset) which means to listen

on all networks

/* Bind to the port */

if (bind(socket_fd , (struct sockaddr *) &server_addr ,

sizeof(server_addr)) <0) {

fprintf(stderr ,"Error binding! %s\n", strerror(errno));

}

15

listen() system call

Sets up a data structure to hold pending incoming

connections in case more than one come in at once.

/* Tell the server we want to listen on the port */

/* Second argument is backlog , how many pending connections can */

/* build up */

listen(socket_fd ,5);

16

accept() system call

• Blocks waiting for incoming connection

• When comes in, gets *new* file descriptor (careful)

• You can take this and fork off a new thread to handle it

(why?)

/* Call accept to create a new file descriptor for an incoming */

/* connection. It takes the oldest one off the queue */

/* We’re blocking so it waits here until a connection happens */

client_len=sizeof(client_addr);

new_socket_fd = accept(socket_fd ,

(struct sockaddr *)& client_addr ,& client_len);

if (new_socket_fd <0) {

fprintf(stderr ,"Error accepting! %s\n",strerror(errno));

}

17

read() system call

Can also use recv() if need extra options.
/* Someone connected! Let’s try to read BUFFER_SIZE -1 bytes */

memset(buffer ,0, BUFFER_SIZE);

n = read(new_socket_fd ,buffer ,(BUFFER_SIZE -1));

if (n==0) {

fprintf(stderr ,"Connection to client lost\n\n");

}

else if (n<0) {

fprintf(stderr ,"Error reading from socket %s\n",

strerror(errno));

}

/* Print the message we received */

printf("Message from client: %s\n",buffer);

18

write() system call

Can also use send() if need extra options.

/* Print the message we received */

printf("Message from client: %s\n",buffer);

/* Send a response */

n = write(new_socket_fd ,"Got your message , thanks!" ,25);

if (n<0) {

fprintf(stderr ,"Error writing. %s\n",

strerror(errno));

}

19

close() system call
printf("Exiting server\n\n");

/* Try to avoid TIME_WAIT */

// sleep (1);

/* Close the sockets */

close(new_socket_fd);

close(socket_fd);

20

Server Notes

• What if you don’t want to exit after, but instead loop?

• What happens if you have more than one incoming

connection?

• poll() vs busy wait?

• What if you want to handle multiple connections at

once?

21

TIME WAIT

• If you quit and immediately try to restart server might

get error saying socket busy. Spec says you should wait

a minute for all packets to clear out. You can wait, or

can force with

int on=1;

setsockopt(s,SOL_SOCKET ,SO_REUSEADDR ,

(char *)&on,sizeof(on));

22

Client Code

23

socket() again
/* Open a socket file descriptor */

/* AF_INET means an IP network socket , not a local (AF_UNIX) one */

/* There are other types you can open too */

/* SOCK_STREAM means reliable two -way byte stream (TCP) */

/* last argument is protocol subset. We leave at zero */

socket_fd = socket(AF_INET , SOCK_STREAM , 0);

if (socket_fd <0) {

fprintf(stderr ,"Error socket: %s\n",

strerror(errno));

}

24

get host address / port

• Note for this example using ”localhost”

• This is a special case, 127.0.0.1 on IPv4.

• Could put in a host name, this gets looked up via DNS.

Or manually put in an IP address.

/* Look up the server info based on its name */

server=gethostbyname(DEFAULT_HOSTNAME);

if (server ==NULL) {

fprintf(stderr ,"ERROR! No such host!\n");

exit (0);

}

/* clear out the server_addr structure and set some fields */

/* Set it to connect to the address and port of our server */

25

memset (& server_addr ,0,sizeof(server_addr));

server_addr.sin_family=AF_INET;

memcpy(server ->h_addr ,& server_addr.sin_addr.s_addr ,

server ->h_length);

/* port should be in "network byte order" (big -endian) so convert */

/* htons = host to network [byte order] short */

server_addr.sin_port=htons(port);

26

connect system call
/* Call the connect system call to actually connect to server */

if (connect(socket_fd ,(struct sockaddr *) &server_addr ,

sizeof(server_addr)) < 0) {

fprintf(stderr ,"Error connecting! %s\n",

strerror(errno));

}

27

wait for response with read()
/* Prompt for a message */

printf("Please enter a message to send: ");

memset(buffer ,0, BUFFER_SIZE);

/* Read message */

fgets(buffer ,BUFFER_SIZE -1,stdin);

/* Write to socket using the "write" system call */

n = write(socket_fd ,buffer ,strlen(buffer));

if (n<0) {

fprintf(stderr ,"Error writing socket! %s\n",

strerror(errno));

}

28

wait for response with read()
/* Clear buffer and read the response from the server */

memset(buffer ,0, BUFFER_SIZE);

n = read(socket_fd ,buffer ,BUFFER_SIZE -1);

if (n<0) {

fprintf(stderr ,"Error reading socket! %s\n",

strerror(errno));

}

/* Print the response we got */

printf("Received back from server: %s\n\n",buffer);

29

close again
/* All finished , close the socket/file descriptor */

close(socket_fd);

30

Notes on Homework

• Make the server loop forever until a string comes in.

• How do you loop forever?

• How do you compare with a string? Can you use ==

• Be careful with strcmp()

• You might even want to use strncmp()

• Comment your code!

31

• Try to fix all compiler warnings!

32

Other Languages

• Python

◦ Low-level interface a lot like C one

◦ Higher level sockserver interface

• Java

◦ More abstraction

◦ java.net, socket=newsocket(addr,port);

33

