
ECE 435 – Network Engineering
Lecture 4

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

9 February 2021

http://web.eece.maine.edu/~vweaver


Announcements

• HW#1 was graded, you should have received your grade

via e-mail.

• HW#2 was posted. Write a mini webserver.

1



HW#1 Review – Sockets Code

• Why port 31337?

• With write syscall, need to set the size to send back.

If you always send size of buffer, it sends lots of useless

zeros.

If you always send 25 (cut-and-paste error) you don’t

send all data.

Use strlen() to get size?

• Don’t ignore compiler warnings.

What if toupper() not found?

2



manpage. Need to include ctype.h

3



HW#1 Review – Specifications

• When you type ”bye” it would exit both sides.

(bye by itself? cr/lf? byet?

• Postel’s Law: strict what send, generous receive?

• Example of browser accepting herf instead of href? why

could this be bad?

4



HW#1 Review – Something Cool

• Something cool... don’t interfere with default behavior.

You can optionally read command line args, but don’t

change default. Also if requires command line args, in

error message say what they would be

5



HW#1 Review – The Rest

• Comment your code!

• OSI reference model – was hoping for names not number

◦ Bits and voltages – physical layer (1?)

Not hardware layer

◦ Routing packets – network layer (3?)

6



http

• HyperText Transfer Protocol

RFC 2068 (1997), RFC 2616 (1999), RFC 7230 (2016)

• Make ASCII request, get a MIME-like response

• Connect with TCP socket

• Plain text request, followed by text headers

• Expects carriage returns in addition to linefeeds

7



http Commands

• GET filename HTTP/1.1

get file

• HEAD

get header (can check timestamp. why? see if cache up

to date)

• PUT

send a file

• POST

append to a file (send form data)

8



• DELETE

remove file (not used much)

• TRACE

debugging

• CONNECT, OPTIONS

9



http three digit status codes

• 1xx – informational – not used much

• 2xx – Success – 200 = page is OK

• 3xx – Redirect – 303 = page moved

• 4xx – Client Error – 403 = forbidden, 404 = not found

• 5xx – Server Error – 500 = internal, 503 = try again

10



selected http request headers (included
after GET)

• User-Agent (browser info). Can you lie? Can you leak

info?

• Referer [sic] URL that referred to here

• Accept-*: type of documents can accept, compression,

character set

• Host: server you are requesting

Can configure browser to open up helper util for this (for

example, run Office if it’s a word file)

11



• Authorization: if you need special permissions/login

• Cookie: deals with cookies

Statelessness – how do you remember setting, logins,

shopping cart, etc. “cookies”. Expire. Can be misused.

• If-Modified-Since – caching

12



selected http response headers

• Content-Encoding,Language,Length,Type

• Last-Modified: helps with caching

• Location: used when redirecting

• Accept-Ranges: partial downloads (downloading a large

file, interrupted, can restart where left off)

13



Do you need a browser?

telnet www.maine.edu 80

GET / HTTP/1.1

Host: www.maine.edu

(enter)(enter)

control-]

close

14



How simple cane a server be?

• My Apple II webserver project

http://www.deater.net/weave/vmwprod/apple2_eth/

15

http://www.deater.net/weave/vmwprod/apple2_eth/


http 1.0/1.1

• HTTP 1.0, single request was set and single response.

Each file/image requested was separate TCP connection

• HTTP 1.1 (1997) supports persistent connections,

allowing multiple requests to happen with one TCP

connection (lowering overhead). How do you know

when to close? (timeout after 60s?)

• For improved performance, open multiple simultaneous

connections instead? Yes, but frowned upon

(server/network load)

16



HTTP/2

• 2015. RFC 7540

• https://http2.github.io/faq/

• Google push through, extension of their SPDY (speedy)

Microsoft and Facebook giving feedback

• Why does google care about (relatively) small increases

in web performance?

• Leaves a lot of high level things the same. Negotiate

what level to use.

• Decrease latency of rendering web pages:

17

https://http2.github.io/faq/


◦ compress headers

◦ Server can push data the browser didn’t request yet

but it knows it will need (like images, etc)

◦ pipeline requests

Send multiple requests without waiting for response

good on high-latency links (FIFO on 1.1, new makes it

asynchronous)

◦ multiplex multiple requests over one TCP connection

◦ head-of-line blocking problem?

line of packets held up by processing of first

FIFO first requests waits until done until next, can’t

18



run in parallel

• Page load time 10-50% faster

• While can use w/o encryption, most browsers say will

only do with encryption

• Criticism: was rushed through. Is way complex. Does

own flow control (has own TCP inside of TCP) Re-

implements transport layer at application layer

• Can check if your web-browser implements HTTP by

going to https://http2.golang.org/

19

https://http2.golang.org/


HTTP/3 or H3

• Web browsers have support but as of Feb 2021 still

disabled by default

• https://blog.erratasec.com/2018/11/some-notes-about-http3.

html

• Uses QUIC – runs sort of custom network congestion

protocol in userspace over top of UDP

• HTTP/3 started as HTTP/2 over QUIC but has

developed more

• QUIC is almost more of a TCP replacement

20

https://blog.erratasec.com/2018/11/some-notes-about-http3.html
https://blog.erratasec.com/2018/11/some-notes-about-http3.html


• HTTPS only

• Can handle better roaming around switching IP addresses

w/o losing connection

• Interface is no longer a sockets interface

21



What if Server Overloaded?

• Slashdot effect (modern: HackerNews?)

• caching/proxy – squid

• Content Delivery Network – akami

• Server farms

22



Web Security

• SSL – Secure Socket Layer

• Replaced by TLS (Transport Layer Security)

• Port 443 for https (we’ll talk about soon)

• Public key encryption.

23



Web Privacy

• Cookies

• Cross-device tracing

• Browser Fingerprinting

24



Setting Up a Web-server

• Apache

• Easy to do, more difficult to secure

25



Web Seach

• Web-bots index the web. robots.txt file

• Altavista, Hotbot, Excite, Inktomi, etc.

• Curated search like Yahoo (people organize links rather

than automatically search)

• Google (1996 some machine in Stanford, 1997-1998)

• MSN search 1999, rebranded Microsoft Bing 2009

26



HW#2 Hints

• Get the header printing first, then worry about

correctness of headers (dates, length))

• Know how to search for a string and point to location

after it?

◦ Find a string and point to beginning of it.
char *pointer;

pointer=strstr(haystack ,needle );

◦ Look for "GET "

Actually points to beginning of GET. How to skip

ahead?

27



◦ pointer+=4 is one way. (pointer math, ugh)

◦ How to get to first space?

◦ strtok(pointer," ");

Will split the string into chunks, put 0 at end.

◦ Also can do this manually;
pointer2=pointer;

while (* pointer) {

if (pointer ==’ ’) {

*pointer =0;

break;

}

pointer ++;

}

printf("%s\n",pointer2 );

• Know how to construct a string on the fly? strcat(),

28



sprintf()

strcpy() first bit in.

strcat() additional strings.

If you want formatting you can do things like
sprintf(temp_string ,"File size=%d\r\n",filesize );

strcat(out_string ,temp_string );

Create big enough buffer.

• How to find size of a file?

Can read it in, and count. Or can use the stat (man

stat.2) need .2 (or man -a) as there’s a command line

tool called stat that comes ip first.

• How to read/write file. There are a large number of

29



ways to do this. open()/read()/write()/close

fopen()/fread/fwrite/fclose (careful! Buffered!

And maybe need fdopen() to print to file descriptor).
fd=open(filename ,O_RDONLY );

if (fd <0) fprintf(stderr ,"Error opening %s\n",filename );

while (1) {

result=read(fd ,buffer ,256);

if (result <=0) break;

write(network_fd ,buffer ,result );

}

Be sure to close afterward.

30


