
ECE 435 – Network Engineering
Lecture 5

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11 February 2021

http://web.eece.maine.edu/~vweaver

Announcements

• HW#2 due Friday.

• HW#3 will be posted. Involves e-mail headers

and encryption (which we won’t finish covering until

Tuesday)

1

Homework #2 Notes

• If connecting on same machine, can use localhost

if over network, must use IP address. Can find this

various ways (ip addr on Linux)

• If browser confused, be sure you aren’t sending extra

zeros. strlen() is your friend

• Debugging? strace, tcpdump

• If getting segfaults, try using gdb

2

Remote Connections

3

telnet/rlogin/rsh/ssh

• telnet – login to remote system (tcp port 23) everything

(including passwords) sent in plain text

• rsh/rlogin – remote shell, remote login. (tcp port 514)

Didn’t even need password, could configure to let you

run commands on remote machine. Security based if

you had same username on both machines, assumption

was getting root on a UNIX machine and connected to

Ethernet was expensive/difficult

4

SSH secure shell

• tcp port 22

• can login, run commands, tunnel tcp/ip, tunnel X11, file

transfer (scp, sftp)

• Large number of RFCs

• Version 1: 1995, originally freeware but became private

• Version 2: 2005, openBSD based on last free version

• For security reasons there’s a push to drop Version 1

• uses public-key cryptography

• transport layer: arranges initial key exchange, server

5

authentication, key re-exchange

• user authentication layer: can have password, or can set

up keys to allow passwordless, DSA or RSA key pairs

• connection layer: set up channels

• lots of encryption types supported, old ones being

obsoleted as found wanting

• Various ssh servers/clients. openssh. dropbear

• Diffie-Helman key exchange?

◦ This is a public/private key thing

◦ Based on discrete logarithms?

◦ Wikipedia has a weird colored paint analogy

6

ssh security

Brute forcing passwords is a major issue.

• Fail2ban

• Nonstandard port

• Port knocking

• Call asterisk for one-time pin?

• No-password (key only)

• Two-factor authentication (LCD keyfob)

7

Alternatives to SSH?

• mosh

8

Encryption

• Most crypto papers involve Alice and Bob (maybe Eve)

• Plaintext is transformed by some sort of function

parameterized by a “key” into Ciphertext.
This is then transmitted. The other side then decrypts

• What can be kept secret? Security by obscurity?

Kerckhoff’s principle: “All algorithms must be public;

only the keys are secret.”

• Combination lock analogy. Longer the key, the harder it

is to brute-force

9

Encryption Types

• easy: rot13

Substitution cipher. Weakness: English text easy to

predict (’e’ most common letter)

What about double-rot13?

• transposition cipher, keep letters same, re-arrange order

• hard: one-time-pad

unbreakable. Downside, must keep it, must have enough

bits, cannot reuse, transporting.

10

Secret Key Algorithm

• Key is secret

• How do you get it to the other person?

• How many keys do you need (ideally one per connection)

11

Symmetric Key Algorithms

• Use same key for encryption and decryption

• Block ciphers, take block of data and encrypt it to same

size block (why in blocks?)

• P-box (permutation), S-box (substitution)

• shift/permute/xor

• *very* important that the key is picked randomly.

12

Symmetric Key Implementations

• DES – Data Encryption Standard

From 1976. 64 bit key (56-bits used). NSA had say

on key size. 19 stages based on Key. widely used until

broken. Competition to break various sizes.

• 3DES (running DES three times) [encrypt/decrypt/encrypt

with only two keys? Why? 112 bits seen as enough, also

if set keys to same then it’s same as single-DES (back

compat)]

• AES – Advanced Encryption Standard – replaces DES

13

NIST had a contest to find new standard

Rijndael won. Intel chips have AES instructions

Galois Field Theory (Gal-wah? interesting

mathematician)

14

Assymetric / Public Key Encryption

• Assymetric/Public Key

• Key is weakest link of symmetric encryption, as both

sides have it and if anyone leaks it, all is lost

• Have a public key that anyone can use to encrypt a

message. Can only be (easily) decrypted by a secret,

private key

• Hard to solve math problems. Integer factorization,

discrete logarithm, elliptic curves

• Often only used to encrypt small amounts of data,

15

i.e. used to encrypt a symmetric key used for longer

transactions

16

RSA

• Rivest/Shamir/Adleman at MIT

• Choose two large primes p and q (1024+ bits)

• Compute: n=p*q, z=(p-1)*(q-1)

• Choose number relatively prime to z: d

(no common factors)

• Find e such that e*d mod z=1

• Divide plaintext into blocks 0 ≤ P < n, blocks of k bits

where k largest 2k < n

• To encrypt, compute C = P e mod n

17

• To decrypt, compute P = Cd mod n

• public key is e,n. private key is d,n

• Hard to break as you need to factor n (hard)

• How do you find p and q? Random number, then apply

various tests to determine if prime

18

RSA Example

• Example from Tanenbaum Figure 8-17:

Pick two large primes: p=3, q=11

n=p*q=33, z=(p-1)*(q-1)=20

d=7 (no common factors with 20)

7 ∗ e mod 20 = 1 so e=3

To encrypt say ”13”, 133 = 2197,mod33 = 19

To decrypt say ”19”, 197 = 893871739mod33 = 13

19

Other Algorithms

• Prime Number Factoring

• Elliptic Curve Cryptography (ECC)

Smaller keysize

20

Uses of Public Key Crypto

• public key encryption, public key used to encrypt message

only holder of private key can decrypt

• digital signature: message signed with private key and

anyone with access to public key can verify the original

sender

21

Cryptographic Hash Functions

• Maps a document of arbitrary size to a fixed size

• Easy to calculate, hard to reverse. Only real feasible way

to reverse is brute-force search

• Should not be able to find two different messages with

same hash

• Small changes in document should lead to very different

hashes

• Two items with same hash are a collision

Are collisions useful? If you can map documents of

22

same filetype, or if somehow same document with lots

of garbage on end

• Break file up into chunks, do a series of operations to

“compress” it, often shift, xor, or, add, and, not

23

Cryptographic Hash Algorithms

• md5 md5sum

128-bit md5 hashes, create checksum, uniquely ID file

Well, not really unique. It’s been broken, can find (with

great difficulty) collisions

• SHA-1

Developed by NSA

Used by git

Broken since 2017

• SHA-2, SHA-3

24

Cryptographic Hash Uses

• passwords (/etc/shadow)

• (mostly) uniquely iding a file (git),

• verifying file contents (download, error checking),

• bitcoin?

25

Proof of Concept —— GTFO

• Has fun generating collisions

26

Other Encryption Concerns

• Redundancy, some way to validate plaintext is valid.

Example: if encrypting a binary blob where each byte

indicates something (12 34 means order 34 cows or

something), random garbage might decode to valid

message

• Freshness – replay attacks. What if you record old

message (Bank deposits $100 to account) and replay.

Will have valid encryption.

• Block chain ciphers

27

• Stream Ciphers

28

Encryption Problems

• Keys leaked (DVD/game console issues)

• poor random numbers used (Debian problem)

• differential cryptanalysis (start with similar plaintexts

and see what patterns occur in output) [DES IBM/NSA

story]

• Power/Timing analysis – note power usage or

timing/cache/cycles when encryption going on, can leak

info on key or algorithm

Bane of perf

29

