
ECE 435 – Network Engineering
Lecture 6

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

3 February 2022

http://web.eece.maine.edu/~vweaver

Announcements

• HW#3 will be posted. Encryption.

• HW#2 was extended to Friday

1

HTML/3 in news

• https://hacks.mozilla.org/2022/02/retrospective-and-technical-details-on-the-recent-firefox-outage/

• Firefox stopped responding worldwide because of a bug

in their HTTP/3 stack made their telemetry break a few

weeks ago

• The fact that they let the telemetry break the browser is

a whole other concerning tale

• But it turns out recent firefox has HTTP/3 set to

automatic, and will use it if found, and google has been

rolling out HTTP/3

2

https://hacks.mozilla.org/2022/02/retrospective-and-technical-details-on-the-recent-firefox-outage/

• Part of the bug is http headers are supposed to be

case-insensitive, and HTTP/2, HTTP/3 suggests they

should be all lowercase, which can break your parser if

you don’t expect it

3

HW#2 Notes

• There are a lot of issues people are having with C.

I didn’t explain things as well as I could because HW#1

had gone relatively well

• Don’t use strlen() to find the size of something that’s

not explicitly a string. It stops at the first 0 (NUL), and

possibly runs off the end if no 0 is found. For tracking

malloc()d areas it’s often best to have a separate

integer where you track the current size.

• While the “right” thing to do with code like this is to

4

malloc() and auto-grow the input buffer in the face of

unknown header size, in practice this is tricky to do in C.

I’d prefer you just start with a really large buffer size (32k

or more?) and error out if the input is too big, rather

than wasting a lot of time chasing malloc/calloc/free

pointer errors

• When you use a char pointer to point into a string (as

when using strstr() or strtok() remember what you

have is a pointer, not a copy of the string you’re pointing

to. So if the buffer gets freed or re-used your pointer

may suddenly point to something different.

5

• You can use sprintf() or similar to generate http

headers. Just be careful with the size of the buffer

(maybe use snprintf() instead. Also try not to be too

fancy with functions in arguments, as C is allowed to

evaluate function arguments in arbitrary order.

• The biggest cause of problem is Content-length: header

not being right. This value is the size of the data you

are sending (after the header), it does not include header

size.

• Instead of reading the file from disk into a buffer, then

sending it all at once with the header, it makes more

6

sense to write the headers to the socket, then have a

loop to read/write the file out in chunks separately. This

avoids needing to allocate large amounts of memory just

to read in then write out.

• Also don’t use sprintf() to print the file contents. It

might work for html, but won’t work for binary data

(like images) that might contain a 0.

• If you are using malloc() and friends, a useful free tool

for finding bugs is Valgrind.

• You can use the wget -s command on Linux to see

what headers are being sent by your server

7

Asymmetric / Public Key Encryption

• Asymmetric/Public Key

• Key is weakest link of symmetric encryption, as both

sides have it and if anyone leaks it, all is lost

• Have a public key that anyone can use to encrypt a

message. Can only be (easily) decrypted by a secret,

private key

• Hard to solve math problems. Integer factorization,

discrete logarithm, elliptic curves

• Often only used to encrypt small amounts of data,

8

i.e. used to encrypt a symmetric key used for longer

transactions

9

RSA

• Rivest/Shamir/Adleman at MIT

• Choose two large primes p and q (1024+ bits)

• Compute: n=p*q, z=(p-1)*(q-1)

• Choose number relatively prime to z: d

(no common factors)

• Find e such that e*d mod z=1

• Divide plaintext into blocks 0 ≤ P < n, blocks of k bits

where k largest 2k < n

• To encrypt, compute C = P e mod n

10

• To decrypt, compute P = Cd mod n

• public key is e,n. private key is d,n

• Hard to break as you need to factor n (hard)

• How do you find p and q? Random number, then apply

various tests to determine if prime

11

RSA Example

• Example from Tanenbaum Figure 8-17:

Pick two large primes: p=3, q=11

n=p*q=33, z=(p-1)*(q-1)=20

d=7 (no common factors with 20)

7 ∗ e mod 20 = 1 so e=3

To encrypt say ”13”, 133 = 2197,mod33 = 19

To decrypt say ”19”, 197 = 893871739mod33 = 13

12

Other Algorithms

• Prime Number Factoring

• Elliptic Curve Cryptography (ECC)

Smaller keysize

13

Uses of Public Key Crypto

• public key encryption, public key used to encrypt message

only holder of private key can decrypt

• digital signature: message signed with private key and

anyone with access to public key can verify the original

sender

14

Cryptographic Hash Functions

• Maps a document of arbitrary size to a fixed size

• Easy to calculate, hard to reverse. Only real feasible way

to reverse is brute-force search

• Should not be able to find two different messages with

same hash

• Small changes in document should lead to very different

hashes

• Two items with same hash are a collision

Are collisions useful? If you can map documents of

15

same filetype, or if somehow same document with lots

of garbage on end

• Break file up into chunks, do a series of operations to

“compress” it, often shift, xor, or, add, and, not

16

Cryptographic Hash Algorithms

• md5 md5sum

128-bit md5 hashes, create checksum, uniquely ID file

Well, not really unique. It’s been broken, can find (with

great difficulty) collisions

• SHA-1

Developed by NSA

Used by git

Broken since 2017

• SHA-2, SHA-3

17

Cryptographic Hash Uses

• passwords (/etc/shadow)

• (mostly) uniquely identifying a file (git),

• verifying file contents (download, error checking),

• bitcoin?

18

Proof of Concept —— GTFO

• Has fun generating collisions

19

Other Encryption Concerns

• Redundancy, some way to validate plaintext is valid.

Example: if encrypting a binary blob where each byte

indicates something (12 34 means order 34 cows or

something), random garbage might decode to valid

message

• Freshness – replay attacks. What if you record old

message (Bank deposits $100 to account) and replay.

Will have valid encryption.

20

Encryption Problems

• Keys leaked (DVD/game console issues)

• poor random numbers used (Debian problem)

• differential cryptanalysis (start with similar plaintexts

and see what patterns occur in output) [DES IBM/NSA

story]

• Power/Timing analysis – note power usage or

timing/cache/cycles when encryption going on, can leak

info on key or algorithm

Bane of perf

21

• Quantum computers

22

Trusting Trust

• When setting up an encrypted connection, how do you

verify who is on the other side?

• How can you protect from man-in-the-middle attacks

(MitM) where someone intercepts them downloading

your public key, replaces with their own, then sits in the

middle decrypting/re-encrypting in a transparent way?

• Some companies/countries will actually do this quite

openly

23

Key Signing Parties

• One way is to have get-togethers were friends sign each

others keys

• If enough people do this, you can create a “chain

of trust” where you can track someone’s identity to

someone you trust

• Linux kernel sorta tries this for git development

• Trouble for new people, or remote people, or people who

don’t travel much, or don’t have many friends

24

Certificate Authorities

• Certificate authority – an official organization that

verifies identities

• Will sign a “certificate” saying who you say you are

• Operating Systems/Web-browsers will ship with a list of

officially trusted Certificate Authorities

• Can hover over the lock symbol in URL bar to verify

who signed for a website

• Hashed?

• Can be revoked

25

SSL/TLS

• Secure Socket Layer / Transport Layer Security

• Handshake protocol followed by key exchange

• Browser says hello, which hashes/algorithms it supports

• Server picks one and sends back

• Server then sends a certificate (signed by authority)

saying who it is, and what its public key is

• Client verifies certificate (via the CA public key it has

stored)

• client generates a random number, encrypts with servers

26

public key, sends to server, used as symmetric key

• What could go wrong, what if someone gets a hold of

server private key? could decrypt logged data.

• Could try Diffie-Hellman key exchange – random number

plus unique session key prevents problems if server private

key leaked

27

Diffie-Hellman (used by ssh)

• Both sides agree on large prime number

• Both sides agree on algorithm (AES?)

• Each side picks independently picks another secret prime

number.

This is not the authentication private key.

• The secret prime, AES, and shared prime are used to

make a public key derived from the private key.

• The generated public key is shared

• The other side uses their own private key, the other side

28

public key, and shared prime to figure out the shared

secret key.

• This secret key is then used for symmetric encryption.

• Example on p812

29

Other tools that use encryption

• How do you encrypt an e-mail, or a hard-drive, etc

• PGP – pretty good privacy

OpenPGP RFC 4880

Encrypt message with symmetric key, send along the key

encrypted via asymmetric

was illegal for a while (more than 40 bit encryption an

exportable munition)

people got RSA algorithm in perl tattoos

• GPG – free software replacement for PGP

30

• Can also PGP sign a message. Not encrypted, but signed

with your key to verify it was in fact sent by you. Takes

hash of the input, then encrypts the hash with key. Also,

downloads from servers (like debian)

31

