
ECE 435 – Network Engineering
Lecture 9

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

15 February 2022

http://web.eece.maine.edu/~vweaver

Announcements

• HW#4 was posted (e-mail, DNS)

1

The Transport Layer

OSI TCP/IP

7 Application Application

6 Presentation

5 Session

4 Transport Transport

3 Network Internet

2 Data Link Host-to-network

1 Physical Host-to-network

2

The Transport Layer

• Responsible for reliable point-to-point data transport

independent of whatever lies beneath.

• Provide process-to-process connectivity, and per-

segment error control and per-flow reliability, as well

as rate control

• Can be more reliable than underlying network

• Most common interface “socket” API from homeworks.

• Network layer dumps raw bytes onto computer,

Transport layer figures out what application gets them

3

Some Transport Layer Protocols

• TCP (Transmission Control Protocol)

◦ connection oriented / stateful / per-flow reliability and

rate control

• UDP (User Datagram Protocol)

◦ stateless / connectionless

• SCTP (stream control transmission protocol)

◦ messages like UDP, reliable like TCP

• QUIC

◦ running reliable connection over UDP

4

The Transport Layer

• Terminology: application = process, data-transfer-unit

is a segment, traffic is a flow

• addressing – each process needs a unique ID. For

internet, this is the “port” number (16-bit)

• Rate control

– Flow control – between source and destination

– Congestion control – between source and network

None in link layer because only one hop?

5

Can be done by sender or network

• Real time requirements – things like video and audio

need extra info such as timestamp, loss rate, etc. So

hard to do with raw TCP/UDP

6

Unreliable, Connectionless – UDP

• User Datagram Protocol (RFC 768)

• Just an 8-byte header tacked onto the data packet

• No reliability, no rate control, stateless

If you want these things you have to add them at higher

layer

• Error control optional

• Why none of those things? All add overhead.

◦ Used when want packets to get through quickly.

◦ Don’t care about re-transmits, better for real-time

7

(VOIP, streaming?)

◦ Easy to implement, for low-level stuff like bootp/dhcp

◦ Good for broadcasting

• Provides process-to-process communication and per-

segment error control

• Can send UDP packets to a destination without having

to set up a connection first

8

UDP Header

2 bytes 2 bytes

Source Port Destination Port
Packet Length Checksum

• 16-bits: source port (optional, says where it is coming

from in case need to respond, 0 if unused)

• 16-bits: destination port

• 16-bits length (in bytes, includes the header)

min: 8, max: 65,515 (less thank 64k, must fit in 64k IP

packet)

• 16-bits checksum (optional, 0 if unused, see below)

9

• data follows

10

Port Numbers

• 16-bit, so 64k of them

• Can map to any you want, but there are certain well-

known ones. Look in /etc/services

For example. WWW is 80/tcp. DNS is 53/udp

• Most OSes, ports <1024 require root (why?)

• 1024 ... 49151 are registered IANA ports

• 49152 ... 65535 are ephemeral ports, dynamic for use by

any service

11

Uniquely identifying flow

• Source/destination addr + source/destination port +

protocol ID (TCP or UDP) is a socket pair (or 5-tuple)

is 104 bits that uniquely identify a flow for IPv4. IPv6

has a specific field for this

12

UDP checksum

• Find info on this in RFC768 and RFC1071

• If set to zero, ignored

• Receiver drops invalid checksums (does not request

resend)

• Algorithm

◦ 1s complement of sum all 16-bit words in header and

payload

padded with 0s to be multiple of 16-bits

◦ Also added to the checksum is a 96-bit pseudo

13

header that has source IP, dest IP, (split in half)

protocol, length (padded to 16). Layering violation?

Enables receiver to catch problems (delivered to wrong

machine) – why could this be a problem?

• What happens if checksum is 0? Conflict with disable

checksum? Entered as 0xffff, which in ones complement

is -0

• Checksum considered mandatory on IPv6 because IPv6

header not checksummed

• Why would you ever leave checksum out? Takes time to

14

compute, might care about latency over errors [video?]

15

UDP pseudo-headers

• IPv4: 32-bit src IP, 32-bit dest IP, 8-bit of 0, 8-bit

protocol (17 UDP), 16-bit UDP Len

• IPv6: 128-bit src IP, 128-bit dest IP, 32-bit UDP len,

24-bit 0, 8-bit next/type (17 UDP)

16

UDP example

0x0000: 8875 563d 2a80 0030 18ab 1c39 86dd 6002 .uV=*..0...9..‘.

0x0010: 2618 0031 1140 2610 0048 0100 08da 0230 &..1.@&..H.....0

0x0020: 18ff feab 1c39 2001 4860 4860 0000 00009..H‘H‘....

0x0030: 0000 0000 8844

UDP starts at 0x36:

e239 0035 0031 9c0e 8657D.9.5.1...W

0x0040: 0120 0001 0000 0000 0001 0377 7777 0465www.e

0x0050: 7370 6e03 636f 6d00 0001 0001 0000 2910 spn.com.......).

0x0060: 0000 0000 0000 00

• What is source port? What is destination port? Size?

• How can you tell what high-level protocol it is?

17

UDP checksum example (from prev slide)

• 16-bit sum of “virtual header” (two IPv6 addresses,

protocol (0x0011) and length of udp packet/header

(0x0031)) is 0x29f8c

• 16-bit sum of UDP header leaving off checksum is 0xe29f

• 16-bit sum of UDP data is 0x2e1c0

• Add them get 0x6 63eb

• It’s a 16-bit sum, so add 0x6 + 0x63eb = 0x63f1

ones complement is 0x9c0e, which matches the UDP

checksum field

18

OS UDP

• When listening on UDP, sets up a queue

• Network stack decodes and gets UDP, finds port, looks

to see if any processes listening on that port

• If so, adds to queue

• If not, sends an ICMP “port unreachable” error message

• All UDP messages to that port, no matter who sends

them, end up in the same queue.

19

Writing UDP sockets code

• Use SOCK DGRAM rather than SOCK STREAM

• Can skip the listen/accept state, as no connection is

there. Just receive the packets as they come in.

• Can’t read then write, as no connection. For the server

to write back to the client it needs to use recvfrom()

which also provides ip/port

• To send a packet use sendto()

20

UDP Socket – Client code
// setup socket

socket_fd = socket(AF_INET , SOCK_DGRAM , 0);

// get server address/port

server=gethostbyname(DEFAULT_HOSTNAME);

memset (& server_addr ,0,sizeof(server_addr));

server_addr.sin_family=AF_INET;

memcpy(server ->h_addr ,& server_addr.sin_addr.s_addr ,server ->h_length);

server_addr.sin_port=htons(port);

sendto(socket_fd ,buffer ,strlen(buffer),0,

(struct sockaddr *)& server_addr , server_len);

21

UDP Socket – Server code

// setup socket

socket_fd = socket(AF_INET , SOCK_DGRAM , 0);

// wait for incoming connection

bind(socket_fd , (struct sockaddr *) &server_addr , sizeof(server_addr));

// read data from socket , including client_addr info

recvfrom(socket_fd ,buffer ,(BUFFER_SIZE -1),0,

(struct sockaddr *) &client_addr , &client_len);

// send reply

sendto(socket_fd ,buffer ,strlen(buffer),0);

(struct sockaddr *)& client_addr , client_len);

22

Common UDP Services

• Obsolete: echo/discard/users/daytime/quote/chargen

• Nameserver

• bootp/tftp

• ntp (network time protocol)

• snmp

23

UDP real-time

• Real-Time Protocol (RFC1889)

• On top of UDP, multiplexes

• data streams

• timestamps

24

