
ECE 435 – Network Engineering
Lecture 10

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

17 February 2022

http://web.eece.maine.edu/~vweaver

Announcements

• HW#4 due Friday

• HW#5 will be posted

1

HW#5 Notes

• Decoding a hexdump
hexdump -C ece435_lec08.pdf

00000000 25 50 44 46 2d 31 2e 35 0a 25 d0 d4 c5 d8 0a 39 |%PDF-1.5.%.....9|

00000010 20 30 20 6f 62 6a 0a 3c 3c 0a 2f 4c 65 6e 67 74 | 0 obj.<<./Lengt|

00000020 68 20 33 37 33 20 20 20 20 20 20 20 0a 2f 46 69 |h 373 ./Fi|

00000030 6c 74 65 72 20 2f 46 6c 61 74 65 44 65 63 6f 64 |lter /FlateDecod|

00000040 65 0a 3e 3e 0a 73 74 72 65 61 6d 0a 78 da 9d 52 |e.>>.stream.x..R|

• First column is offset into the file or packet (usually in

hex).

• The next set of columns are the raw bytes, in hex.

• The last column is the ASCII char equivalent of the raw

data. a ‘.’ often indicates non-printable ASCII.

2

HW#3 Review

• md5sum/encryption, seems to have gone well

• How to validate PGP key is indeed for who it says?

◦ https isn’t enough, what if the person who admins the

webserver is evil?

◦ Certificate Authority (costs money)

◦ Distributed Web of Trust (key signing party).

◦ Compare in person/phone, key fingerprint if not want

to send whole thing.

• Encrypted message went fine

3

• Why not use SHA-1 for git anymore? It’s been “broken”

which means possible to generate a collision

• Can you use virtual hosting with https? Problem is host

header isn’t received until after the SSL conection set

up.

4

Transmission Control Protocol (TCP)

• RFC 793 (from 1981) / 1122 / 1323

2018 / 2581 / 2873 / 2988 / 3105, summary in 4614

• Generally attributed to Vint Cerf and Bob Kahn

• Reliable, in-order delivery.

• Adapts to network congestion

• Takes data stream, breaks into pieces smaller than 64k

(usually 1460 to fit in Ethernet) and sends as IP

5

• No guarantees all packets will get there, so need to

retransmit if needed.

• Multiple connections can share same port (i.e. webserver

on port 80 can handle multiple simultaneous requests)

• Point-to-point (can’t multicast)

• Full duplex

• Byte stream, if program does 4 1024byte writes there’s

no guarantee the other end sees 4 chunks of 1024, only

4k stream of bytes is guaranteed.

6

• PUSH flag can be sent that says not to buffer (For

example, if interactive command line)

• URGENT flag can be sent that says to transmit

everything and send a signal on the other side that

things are urgent.

7

TCP Header

Fixed 20-byte header. From RFC793:
0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source Port | Destination Port |

+-+

| Sequence Number |

+-+

| Acknowledgment Number |

+-+

| Data | |C|E|U|A|P|R|S|F| |

| Offset|Reservd|W|C|R|C|S|S|Y|I| Window |

| | |R|E|G|K|H|T|N|N| |

+-+

| Checksum | Urgent Pointer |

+-+

| Options | Padding |

+-+

| data |

+-+

8

TCP Header Format

• 16-bit source port

• 16-bit dest port

• 32-bit sequence number

• 32-bit ack number

next byte expected, not last one received

• 4-bit data offset (mul by 4) (min 5 (20), max 15 (60))

header length/points to start of data

• 3-bit reserved zero (not used)

• 9 bits of flags

9

◦ NS / CWR / ECE – for ECN congestion

◦ U (URGent) – urgent pointer points to urgent byte

◦ ACK (acknowledge) – 1 if ack field valid, otherwise

ack field ignored

◦ PSH – receiver should process the data immediately

and not buffer it waiting for more to come in

◦ RST (reset) – reset a connection because something

has gone wrong

◦ SYN (synchronize) – used to establish connection

CONNECTION REQUEST (SYN=1,ACK=0) and

CONNECTION ACCEPTED (SYN=1,ACK=1)

10

◦ FIN – used to release a connection

• 16-bit window size – Only in ACK, says how many bytes

to send back. This can be 0, which means I received

everything but I am busy and can’t take any more right

now (can send another ACK with same number and

nonzero window to restart)

• 16-bit checksum – similar to UDP also with pseudo

header

• 16-bit urgent pointer

• options (32-bit words) – we’ll discuss these later

• data

11

TCP Header – Options

• type=0 End of option

End of all options. Only one allowed (not always

needed?)

• type=1 No operation (for padding to 32-bit boundary)

• type=2, Len=4, Value=16-bits Maximum Segment

Size

only in initial SYN packet

• type=3, Len=3, Value=8-bits Window size

Scaling factor to shift window size by (0..14), raising

12

limit to 1GB. Only set during handshake

• type=4, len=2 Selective ACK permitted

• type=5, len=? Selective ACK

list of 1-4 blocks being selectively acknowledged, as 32-

bit begin/end pointers

allows only resending missing packets instead of having

to restart at last ACK (RFC1106?)

• type=8, len=10 Timestamp and echo of last timestamp

Not necessarily current time. (RFC1323) PAWS,

Protection against Wrapped Sequence-number

High bandwidth, seq num can wrap. Use timestamps to

13

recognize when this happens.

Fast connections sequence can wrap quickly (orig

internet 56k, modern 1Gb connectios wrap in seconds

rather than weeks)

14

TCP Opening Connection
Sender Receiver

SYN SEQ=X

SYN=1 ACK=0

SYN+ACK

SEQ=Y, ACK=X+1

ACK

SEQ=X+1, ACK=Y+1

• Three-way handshake (Tomlinson 1975)

◦ Server does LISTEN/ACCEPT to wait for connection.

◦ Client issues CONNECT: destination/port/size, etc.

◦ CONNECT chooses random initial sequence number

(ISN) X

15

Sends SYN(SEQ=X) (SYN=1 ACK=0) with port and

sequence number

◦ Server receives packet. Checks if listening on that

port; if not send back a packet with RST to reject.

◦ Otherwise it can accept

sends back ACK(X+1) plus SYN(SEQ=Y) with

sequence of own

◦ Client then responds with the server SYN ACK(Y+1)

SEQ=x+1

◦ Connection is established

• SYN number picked, not to be 0. Originally clock based

16

(random these days?). If machine reboots should wait

for maximum lifetime to make sure all close

• Why do this? What happens with simultaneous

connection?

17

TCP Closing Connection

• Closing connection

• Although full duplex, almost like two independent one-

way connections, released independently

– one side sends packet with FIN

– other side sends ACK of FIN, that direction is shut

down

– other direction can keep sending data though

– at some point other side sends FIN

– this is ACKed

18

– Two army problem?

Two generals on opposite side trying to co-ordinate

attack. Any message can be intercepted by enemy. So

say “attack at 9pm” but that could be lost. Could

require other side to send reply, but that could be

lost. You need infinite messages to guarantee it got

through.

If FIN not ACKed within two packet lifetimes, will

close anyway. The other side eventually notices and

closes too.

19

TCP State Machine

• 11 possible states

◦ starts in CLOSED

◦ LISTEN – waiting for a connection

◦ SYN-SENT – started open, waiting for a returning

SYN

◦ SYN-RECEIVED – waiting for ACK

◦ ESTABLISHED – open, two-way communication can

happen

◦ FIN-WAIT-1 – application has said it’s finished

20

◦ FIN-WAIT-2 – the other side agreed to release

◦ CLOSE-WAIT – waiting for a termination request

◦ CLOSING – waiting for an ACK of closing request

both sides closed at once

◦ LAST-ACK – waiting for ACK from last closing

◦ TIME-WAIT – waiting to transition to CLOSED long

enough to ensure other side gets last ACK

• large state diagram

21

Typical Connection seen by Client

• CLOSED

user does connect(), SYN sent (step 1 of handshake)

• SYN-SENT

waits for SYN+ACK, sends ACK (step 3 of handshake)

• ESTABLISHED

sends/receives packets

eventually user will close() and send FIN

• FIN-WAIT-1

FIN sent, waiting for ACK

22

• FIN-WAIT-2

one direction closed

received ACK of FIN, wait for FIN from other side,

respond with ACK

• TIME-WAIT

wait until timeout to ensure all packets done in case

ACK got lost

• CLOSED

23

Typical Connection seen by Server

• CLOSED

waits for listen()

• LISTEN

gets SYN, sends SYN+ACK (step 2 of handshake)

• SYN-RECVD

waits for ACK

• ESTABLISHED

sends/receives

FIN comes in from client, sends ACK

24

• CLOSE-WAIT

, closes itself, sends FIN

• LAST-ACK

gets ACK

• CLOSED

25

TCP Reliability

• Per-segment error control

– checksum, Same as UDP.

– also covers some fields in IP header to make sure at

right place

– TCP checksum is mandatory

– Checksum is fairly weak compared to crc32 in Ethernet

• Per-flow reliability

– What to do in face of lost packets? Need to notice

26

and retransmit and handle out-of-order

– Sequence number generated for first blob (octet?),

32-bit number in header

– Sender tracks sequence of what has been sent, waiting

for ACK

– On getting segment, receiver replies with ACK with

number indicating the expected next sequence number,

and how much has been received. ”All data preceding

X has been received, next expected sequence number

is Y. Send more”

– Selective ACK – has received segment indicated by

27

ACK

– Cumulative ACK – all previous data previous to the

ACK has been received

28

Error Correction

• Ways to Catch Errors

◦ Checksum

◦ Acknowledgement

◦ Time-out

29

Comparison: Good Transaction
Sender Receiver

SEQ=100, Len=50

ACK = 150

SEQ=150, LEN=40

ACK=190

30

Error: Corrupted or Lost Packet

• SEQ=100 Len=50 bytes, SEQ=150 LEN=50, SEQ=200

LEN=50

First one never made it, receiver only acks through

ACK=100 After three duplicate ACKs, sender retransmit
Sender Receiver

SEQ=100, Len=50

ACK=190

SEQ=150, LEN=40

ACK = 100

SEQ=100, Len=50

31

Error: Delay or Duplicate Packet

• Duplicate packet (how can happen? a timeout happens

and is resent just before ACK gets in)

TCP discards packets with duplicate SEQ
Sender Receiver

Timeout

SEQ=100, Len=50

ACK = 150

SEQ=100, Len=50

32

Error: Out-of-order Packet

• Out-of-order packet

Do not ACK packet until preceding ones make it.

For performance can queue up out of order ones so they

don’t have to be resent
Sender Receiver

SEQ=100, Len=50

SEQ=150, LEN=40

ACK = 100

ACK=190
SEQ=100, Len=50

33

Error: Lost ACK

• ACKs cumulative, so if the next packet causes an ACK

then it doesn’t matter. Otherwise a timeout?
Sender Receiver

SEQ=100, Len=50

ACK=190

ACK = 150

SEQ=150, LEN=40

34

TCP Timer Management

• What should the timer value be? Too short, send extra

packets, too long and takes long time to notice lost

packets.

• On the fly measures round trip time. (RTT) When

send segment, start timer, updates. Various algorithms.

Often 2 or 4x

• Connection Timer – send SYN. If no response in time,

reset

35

• Retransmission Timer – retransmit data if no ACK

• Delayed ACK timer – if send a packet, tag an ACK

along if timer expires and no outgoing data, have to

send stanadlone ACK

• Persist Timer – solve deadlock where window was 0, so

waiting, and missed the update that said window was

open again.

Sends special probe packet. Keep trying every 60s?

• Keepalive Timer – if connection idle for a long time,

sends probe to make sure still up

36

• FIN WAIT 2 Timer – avoid waiting in this state forever

if other side crashes

• TIME WAIT TIMER – used in TIME WAIT to give

other side time to finish before CLOSE

37

