ECE 435 – Network Engineering Lecture 24

Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu

19 April 2022

Announcements

- Nor'easter
- Sent out preliminary presentation schedule
- Review for Final on Thursday Tuesday 3 May 2022, 8am-10am, Bennett Hall 115
- Don't forget course reviews

Cellphones

- What was life like before cellphones?
- Hard to keep up as things are constantly changing

Phone Numbers

- 10 digits?
- Number portability?

Cellphones – Cells

- Geographic area split up into cells
- Each cell uses a frequency different than neighbors
- Smaller cells, lower power more users

```
_/B\_/G\_/
_/G\_/C\_/A\
/ \_/A\_/F\_/
\_/F\_/D\_/
\_/E\_/
```


Cellphones – Infrastructure

- Center of each cell is base station
- Hilltops? Giant towers? Fake Trees? Churches?
- Transmitter/Receiver
- Connected to MSC (mobile switching center) or MTSO (Mobile Telephone Switching Office)

Cellphones – Handoff

- Basic idea (more complex with later versions)
- Phone communicates with tower when in cell
- When signal gets weak, asks surrounding towers about signal strength
- The one with strongest signal takes over control
- Has to switch frequencies
- This handoff takes about 300ms
- soft handoff: connects to new before switching off old.
 no loss, but needs to be able to receive two freq

 hard handoff, old drops before new. If something goes wrong, lose connection.

Cellphones – Types of Channels

- Control (base to phone)
- Paging (base to phone) alerts phone for incoming call
- Access (bidirectional) call setup and channel assign
- Data (bidirection) carry data/voice

Cellphone – 0G

• 1946 first car phones

Only a few per city, more similar to a 2-way radio that an operator used to connect you to the phone network
Single channel for send/receive, push to talk

- 1960s Improved Mobile Telephone System (IMTS)
 O High-power (200W) base station on hill
 - \circ Two frequencies for send/receive
 - \circ 23 channels spread from 150MHz to 450MHz
 - Had to wait a while for dial tone if busy

Due to large transmitter, systems had to be far apart avoid interference

Cellphone 1G

- Analog decommissioned in 2008
- 1982 AMPS Advanced Mobile Phone System
 Bell Labs, deployed in US in 1983
 Also England (TACS) and Japan (MCS-L1)

1G - AMPS

- Cells 10-20km across (larger than modern digital)
- FDM (Frequency Division Multiplexing)
- 832 full duplex channels, each a pair of simplex channels 824MHz to 849MHz mobile to base 869MHz to 894MHz base to mobile
- Each channel 30kHz wide
- 40cm, straight lines but blocked by trees and plants and bounce
- Since adjacent cells cannot use same freq, only maybe 40

or so freq available at each tower (lose some for control channels too)

1G – AMPS – Protocol

- Phone had 32-bit serial number and 10-digit phone number.
- On power it scans the list of 21 control channels and picks strongest . The tower gets this, logs it.
- Phone re-registers every 15 mins.
- Press send, tries to send. If collision wait. Tower finds idle channel for call, then notifies phone which one.
- Incoming, constantly monitors to paging channel to see if one is incoming.

Phone network keeps track of which MSC the phone is in range of. Sends a broadcast on paging channel to see if it there, phone responds saying yes, then MSC sends message saying something like "call on channel 4"

1G – AMPS – Security

- none. Plain analog, could listen on scanner (government made it illegal to sell scanners that could listen on those frequencies)
- Cloning could listen and capture phone ID when it sends to tower. Then reprogram your own phone to steal the phone's account, make calls for free, etc.

Cellphone 2G – Digital

- Roughly 1991
- Sometimes term PCS (Personal Communications Services) used, originally meant in 1900MHz band
- Digital, Encrypted, Data+SMS, Voice
- Benefits
- Can be digitized and compressed, less bandwidth
- Can be encrypted, better security
- Being decommissioned, starting 2017 with T-mobile last in the US not until December 2022

Cellphone 2G – D-AMPS

- Co-exist with AMPS, 1G and 2G could operate in same cell.
- Same freq, can change on fly which channels digital, which analog.
- Freq in 1800-1900 waves are 16cm, 0.25 wave antenna 4cm so can have smaller phones.
- Compression of signal, so much that typically 3 can use same channel via TDMA
- Control is complicated

Cellphone 2G – GSM

- Original European, Groupe Specialé Mobile, but when popular Global System for Mobile
- everywhere but US and Japan.
- Standard 5000 pages long.
- FDM used
- GSM channels wider, higher data rate.
- In theory up to 900 channels available
- Simplex, cannot send and receive at same time.
- 33kbps, but after overhead only 13kbps

Cellphone 2G – GSM infrastructure

- SIM card (Subscriber Identity Module)
- Network ID follows the SIM, not the phone
- Has encryption
- Cell base stations have BSC (Base Station Controller)

Cellphone 2G – GSM protocol

- MSC maintains list of nearby phones, VLR (Visitor Location Register)
- Also database last known location of each phone HLR (Home Location Register)
- Runs at 900, 1800, 1900MHz. More spectrum than AMPS to allow more phones
- Frequency Division Duplex like AMPS (transmits on one freq, receive on 55MHz higher)
- Freq pair split up with time-division multiplexing in time

lots and shared

- GSM channels much wider than AMPS (200kHz vs 30kHz)
- Up to 992 channels, but many not available due to neighbor cells
- Transmit/Receive not at same time as GSM transmitters cannot and takes time to switch from send to receive
- Assigned a time slot to transmit in
- Each channel in theory 270kbps, split 8 ways 24.7kps but error correction takes down to 13kbps

2G GSM – Channels

- Broadcast Control Channel continuous stream from tower give ID and status, is how you determine signal strength
- Dedicated Control Channel location update, registration, call setup
- Common Control Channel
 - Paging channel announce incoming calls
 - Random Access Channel request a slot on dedicated control

• Access Grant Channel – if negotiate slot successfully

2G GSM – Handoff

- Handoff in AMPS was done entirely in base station
- In GSM most of time idle between slots
- It can notice if signal needs handoff and setup itself
- MAHO (Mobile Assisted HandOff)

Cellphone 2G – CDMA (IS-95)

- code division multiple access
- Qualcomm
- At first people thought it was crazy
- Instead of having channels, tower broadcast throughout the spectrum. Coding theory.
- Noisy room analogy: TDM is people taking turns talking.
 FDM, people in clumps talking to each other.
 CDMA everyone talking at once, but different language

 Chips. Complicated. Sequence of -1, 1. Send sequence for 1, inverse 0. Each device assigned own chip sequence, can mathematically separate

Cellphone 2.5/2.75G

- Newer phones started needing more bandwidth for data
- 2.5G (original iPhone)
 - GPRS
 - General Packet Radio Service
 - Packet vs Switched
 - Speed 50kbps (40kbps achievable)
- 2.75G
 - EDGE (Enhanced Data Rate for GSM Evolution) in 2003

8PSK encoding500kbps

Cellphone 3G

- 1998 2001
- Digital Voice and Data
- IMT-2000 standard (started planning 1992) (2000 was year to come out, frequency, and bandwidth? did not make any of those)
- Wanted 2GHz worldwide but only China reserved
- 2Mbps if stationary, but 384kbps walking speeds 144kbps cars
- 200kbps (3.5 and 3.75G provide "broadband" speed)

- Security, more secure than 2G, better ciphers (KASUMI)
- Mix of connection and packet based
- Being decommissioned, most right now (early 2022) with last Sprint in December 2022

3G – W-DCMA vs CDMA2000

- differences mostly politics
- both based on CDMA
- EU wanted GSM compatibility
- US wanted IS-95 compat
- UMTS include both

3G – More on advanced CDMA

- 3.84Mchips/sec, sending code 4-256 chips
- 256 chip code, 12kpbs (enough for voice)
- 4 chip code, 1Mbps
- In order to be faster use more than one channel
- Chip sequences, but hard when not all arrive at same time, need some orthogonal with any start time Instead use pseudo-random values, low cross-correlation
- For this to work handset power signals have to be regulated so roughly same reaching receiver (1500

times/sec)

- benefits
 - \circ Can take advantage of time when silent (60% of time)
 - TDM and FDM can't do this, CDMA more channels can be used if there's quiet time
 - CMDA only one frequency, don't have to hand out separate
 - Can use directional (sectored) rather than omnidirectional antenna
 - Soft-handoff, on same frequency so can associate with new antenna before disconnecting from old

3G – Wideband CDMA (W-CDMA)

- Ericsson / EU UMTS (Universal Mobile Telecommunications System)
- 5MHz channels
- Different users can send data at different rates

3G - CDMA2000

- Qualcomm
- 1.25MHz channels

Cellphone 4G

- 2008
- Digital Voice and Data, packet switched
- The "G" has become a marketing term

Cellphone 3.9G

- First implementations declared not really 4G
- Mobile WiMAX (IEEE 802.16) cancelled
- LTE (Long Term Evolution)

Long-term Evolution (LtE)

- First release on 3.9G (need peak of 1Gbps to be 4G)
- Finalized 2008
- 300Mbps down, 75Mbps up
- Low latency (sub 5ms)
- Can handle mobile at up to 220mph to 310mph (depends on frequency)

- Flexible spectrum widths, 1.4, 3, 5, 10, 15, 20 MHz wide bads
- 20 active devices per cell

Cellphone 4G

- Packet switched
- EPC (evolved packet core)
- Data and Voice networks. Voice is VoIP (voice over IP)
- 100Mbps upload / 50Mbps download
- More frequencies, 700MHz, 850MHz, 800MHz
- Need good "spectral efficiency", how many bps per frequency

Should be 15bps/Hz for down and 6.75bps/Hz for up

Cellphone 4G – Radio Access Network (RAN)

- access node eNodeB performs actions in physical layer
- Medium Access Control (MAC), Radio Link Control (RLC) Packet Data Control Protocol (PDCP)
- VoLTE (Voice over LTE)

Cellphone 4G – LTE, EPC

- Serving Gateway (S-GW) forwards packets when moving between eNodeBs
- Mobility Management Entity (MME) tracks/pages the device and chooses SGW
- Packet Data Network Gateway (P-GW) interfaces between user and pack data network (provide IP address, etc)
- Home Subscriber Server (HSS) determines if user a valid subscriber

Cellphone 4G

- Only real 4G is LTE advanced and mobile WiMaX advanced
- Requirements: 100Mbps for mobile, 1Gbps stationary (walking)
 Why is it harder for mobile?
- Packet switching IPv6 based, not connection based
- OFDMA

Cellphone 5G

- 4G finally mature around 2014, working on next
- Whatever is used for faster access, 5G
- Goal is increase area capacity of network by 1000 times that of 4G
 - Oltra-densification. More cells per area. picocells (less than 100m diameter) or femtocells (Wi-fi like range).
 More complicated handoff

- Increased bandwidth, millimeter waves. Current in MHz to GHz, so wavelength centimeters to a meter. Crowded. Lots of unused in mm wave 20-300GHz. Do not penetrate well. Better antennas?
- MIMO (multiple input/output) multiple antennas
 Network slicing

Cellphone 6G?

- They are thinking about it
- Will be faster
- Nothing concrete yet

Cellphone Hardware

- Transmitter and application separate
- Antennas
- Sim cards. Multiple?

Cellphone Security

- SIM chip cloning
- Fake base stations (look into this more)
- App processor runs regular OSes (Android is Linux for example) so vulnerable to all the regular types of exploits

