ECE 435 — Network Engineering
Lecture 5

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

31 January 2023

https://web.eece.maine.edu/~vweaver

Announcements

e HW+1 was Graded

e HW#2 posted, due Thursday.
This is possibly the most difficult assignment.

e Delaying due date to Friday as people having some issues
with It

HW#1 Review — Notes

e Handle unexpected early close, say control-C pressed
e Aside, why port 313377
e Writing data
o With write syscall, need to set the size to send back.
o If you always send size of buffer even if not full, it
sends lots of useless zeros.
o Make sure you specity size to send. Provided code this
Is hard-coded to 25 but you don't want that with your
custom reply

-y 2

o You can use strlen() to get size of string (don't use
sizeof ())
e Don't ignore compiler warnings.
What if toupper () not found?
manpage. Need to include ctype.h

HW=+#1 Review — Specifications

e WWhen you type "bye"” it would exit both sides.
(bye by itself? cr/If? byet?
e Postel's Law: strict what send, generous receive?

e Example of browser accepting herf instead of href? why
could this be bad?

HW+#1 Revi

ew — Something Cool

e Command line arguments

o Don't interfere wit
o Is good to print ex
error, or have a hel

n default behavior (unexpected)
hected command lines if there's an

D option

o Can you just document it in the README? Sadly
people don't always read documentation?
e Printing port/address
o Biggest issue is forgetting to use htons() on the port
and htonl () on address

o This might not be obvious if you don't know what
the port/address should look like (netstat or ss can

help)

HW#1 Review — The Rest

e Comment your code!
e OSI reference model — was hoping for names not number
o Bits and voltages — physical layer (17)
Not hardware layer
o Routing packets — network layer (37)

Homework #2 Notes — Connecting

e If connecting on same machine, can use localhost
If over network, must use |P address.

e Can find this various ways (ip addr on Linux)

e Be aware depending on how your network is set up
(firewalls, if behind NAT, etc) you might not be able to
connect to your test machine remotely

Homework #2 Notes — Common
Issues /Debugging

o If browser confused, be sure you aren't sending extra
zeros. strlen() is your friend

e If browser gets some data but then just spins waiting, be
sure your Content-length field is set with the proper size

Note it's the size of file you are sending, does not include
neader size.

e Debugging? strace, tcpdump
o If getting segfaults, try using gdb

HW+#2 Hints — Reading Request

e First be sure you are getting the incoming header. Print
it or use strace to veritfy.
e Some web-browsers might send really big requests, be
sure getting 1t all
o Use big enough buffer? 4096 bytes? How big?
o How would a “proper” server do this?
malloc(), realloc() if not big enough?
Overkill for this homework. You can try this, but only if
you know what you are doing. Goal of this assignment

-y 10

Is a simple server not perfect server.
o Just use a bigger buffer if necessary and error if you
get bigger, don't waste time chasing pointers/segfaults

/Y 11

HW=+#2 Hints — Parsing the Request

e Know how to search for a string and point to location
after it?

o Find a string and point to beginning of it.

char *pointer;
pointer=strstr (haystack ,needle);

o Look for "GET "

Actually points to beginning of GET. How to skip
ahead?

o pointer+=4 is one way. (pointer math, ugh)
o How to get to first space?

-y 12

o strtok(pointer," ");
Will split the string into chunks, put 0 at end.
o Also can do this manually;

pointer2=pointer;
while (*pointer) A
if (pointer==’ ’) {
*pointer=0;
break;

+

pointer++;

}
printf ("/s\n",pointer2);

e Be sure to strip off initial /, and if it's just / return
index.html

PAA 13

HW#2 Hints — Generating Response
Headers

e Print to stdout to verity what sending, also can use lynx
/ wget.
e Know how to construct a string on the fly?
o One way is to have empty string, than use strcpy()
first bit in. strcat () additional strings.
o Easier might be sprintf() If you want formatting
you can do things like

SipaibnibiisHcmpussitsiniolsebERilic dshitze =id A el niitisliaisrizlc P
strcat (out_string,temp_string);

-y 14

o snprintf () might be a bit safer as you can specify
the max length of the string (to avoid overflowing)

o Try not to be too fancy with one gigantic sprintf call as
C can evaluate function parameters in arbitrary orders

-y 15

HW+#2 Hints — General C annoyances

e When you use a char pointer to point into a string (as
when using strstr() or strtok() remember what you
have is a pointer, not a copy of the string you're pointing
to. So if the buffer gets freed or re-used your pointer
may suddenly point to something different.

-y 16

HW+#2 Hints — Getting Size of File

e Can read it in, and count.

e Or can use the stat (man stat.2)
need .2 (or man -a) as there's a command line tool
called stat that comes ip first.

AL/ "

HW+#2 Hints — Sending File Contents

e Reading file into buffer then writing to socket
o | don't recommend this as you have to dynamically
handle different file sizes
o If you do this, don't use sprintf() with %s to print the
contents. Won't work if 0 in file
e Reading/Writing in chunks
o open()/read() /write()/close
o fopen()/fread/fwrite/fclose (careful! Buffered!
And maybe need fdopen() to print to file descriptor).

-y 18

fd=open(filename , 0_RDONLY) ;
if (£d<0) fprintf(stderr,"Error opening %s\n",filename);
while (1) A

result=read (fd,buffer ,hb 256) ;

if (result<=0) break;

write (network_fd ,buffer,result);

}

Be sure to close afterward.

19

HW+#2 Notes — Knowing Request is Done

e How do you know you've read all the data from a socket
without blocking when you hit the end?
e Short answer: you can't. TCP is a byte stream, you
don't get to see packet boundaries.
o Ideally you'll read things in and handle the values in
each read independently, even if they are incomplete
o Also your protocol can contain info that lets you know
how long things are (content-length), or have a signal
(like the empty newline in http after headers) that let

-y 20

you know

o You can set the fd to be non-blocking, but then you
have to busy-wait which Is not optimal

o You can use poll() to be notified when a fd has data
but that's complex

o The recv() call (unlike read() has some extra flags
that can help. On Linux can pass MSG_DONTWAIT

which will not-block and just return an error if no data
Is available

-y 21

Remote Connections

22

Historical — telnet

e log in to remote system

e (tcp port 23)

e everything (including passwords) sent in plain text
e telnetd running on remote server

23

Historical — rsh/rlogin

e remote shell, remote login

e (tcp port 514)

e Didn't even need password, could configure to let you
run commands on remote machine

e Security based if you had same username on
both machines, assumption was getting root on
a UNIX machine and connected to Ethernet was
expensive/difficult

-y 24

SSH secure shell (background)

e Encrypts a connection between machines

e tcp port 22

e can login, run commands, tunnel tcp/ip, tunnel X11, file
transfer (scp, sftp)

e Large number of RFCs

e Version 1: 1995, originally freeware but became private

e Version 2: 2005, openBSD based on last free version

e [or security reasons there's a push to drop Version 1

e uses public-key cryptography

-y 25

SSH (implementation)

e transport layer: arranges initial key exchange, server
authentication, key re-exchange

e user authentication layer: can have password, or can set
up keys to allow passwordless, DSA or RSA key pairs

e connection layer: set up channels

e lots of encryption types supported, old ones being
obsoleted as found wanting

e Various ssh servers/clients. openssh. dropbear

e Diffie-Helman key exchange?

-y 26

o This is a public/private key thing
o Based on discrete logarithms?
o Wikipedia has a weird colored paint analogy

27

ssh security

Brute forcing passwords is a major issue.

e Fail2ban

e Nonstandard port

e Port knocking

e Call asterisk for one-time pin?

e No-password (key only)

e Two-factor authentication (LCD keyfob)

28

e mosh

Alternatives to SSH?

29

Encryption Background

e Most crypto papers involve Alice and Bob (maybe Eve)
e Plaintext is transformed by some sort of function
parameterized by a “key” into Ciphertext.
This is then transmitted. The other side then decrypts
e What can be kept secret? Security by obscurity?
Kerckhoff’'s principle: “All algorithms must be public;
only the keys are secret.”
e Combination lock analogy. Longer the key, the harder it
is to brute-force

/Y 30

Encryption Types — Substitution

e Substitute each character for another with lookup table
e Decrypt by just doing the reverse
e Trivial Example: rotl13 (Ceasar Cipher)
o A-N, B-O, C-P, etc.
o Weakness: English text easy to predict ('e’ most
common letter)

o What about double-rot13?

-y 31

Encryption Types — Transposition

e transposition cipher, keep letters same, re-arrange order

-y 32

Encryption Types — One Time Pad

e Unbreakable

e Downsides: must have enough bits, cannot reuse,
transporting.

/Y 33

Secret Key Algorithm

Key Is secret
How do you get it to the other person?

How many keys do you need (ideally one per connection)

-y 34

Symmetric Key Algorithms

e Use same key for encryption and decryption

e Block ciphers, take block of data and encrypt it to same
size block (why in blocks?)

e P-box (permutation), S-box (substitution)

e shift/permute/xor

e *very™ important that the key is picked randomly.

-y 35

Symmetric Key Implementations —
Historical

e DES — Data Encryption Standard
From 1976. 64 bit key (56-bits used). NSA had say
on key size. 19 stages based on Key. widely used until
broken. Competition to break various sizes.

e 3DES (running DES three times) [encrypt/decrypt/encrypt
with only two keys? Why? 112 bits seen as enough, also
if set keys to same then it's same as single-DES (back

compat)]

/Y 36

Symmetric Key Implementations — AES

e AES — Advanced Encryption Standard

o replaces DES

o NIST had a contest to find new standard

o Rijndael won
developed by two Belgian cryptographers Joan Daemen
and Vincent Rijmen

o NSA allows for classified data
Intel chips have AES instructions
Galois Field Theory (Gal-wah? interesting

-y 37

mathematician)

AES Encryption

1. Key Expansion

2. AddRound on initial key (add/xor on round key)

3. 9/11/13 rounds (depending on key size)

(a) SubByte: non-linear substitution (w lookup table)
(b) ShiftRows: transposition/row shift

(c) MixColumns: mix columns (matrix multiply)

(d) AddRound (xor again)

39

4. Final round: a,b,d again

40

AES Attacks

e In theory take billions of years to brute force

e "“Attack” means finding some way to decode key faster
than brute force

e Have been some but none really effective yet

e Side Channel Attacks are possible though

-y a1

AES Performance

e Pentium Pro 200MHz: 11 MBits/s
e Modern Intel/AMD with AES in hardware, multiple GB/s

-y 42

