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Announcements

• HW#1 was Graded

• HW#2 posted, due Thursday.

This is possibly the most difficult assignment.

• Delaying due date to Friday as people having some issues

with it
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HW#1 Review – Notes

• Handle unexpected early close, say control-C pressed

• Aside, why port 31337?

• Writing data

◦ With write syscall, need to set the size to send back.

◦ If you always send size of buffer even if not full, it

sends lots of useless zeros.

◦ Make sure you specify size to send. Provided code this

is hard-coded to 25 but you don’t want that with your

custom reply
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◦ You can use strlen() to get size of string (don’t use

sizeof())

• Don’t ignore compiler warnings.

What if toupper() not found?

manpage. Need to include ctype.h
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HW#1 Review – Specifications

• When you type ”bye” it would exit both sides.

(bye by itself? cr/lf? byet?

• Postel’s Law: strict what send, generous receive?

• Example of browser accepting herf instead of href? why

could this be bad?
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HW#1 Review – Something Cool

• Command line arguments

◦ Don’t interfere with default behavior (unexpected)

◦ Is good to print expected command lines if there’s an

error, or have a help option

◦ Can you just document it in the README? Sadly

people don’t always read documentation?

• Printing port/address

◦ Biggest issue is forgetting to use htons() on the port

and htonl() on address
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◦ This might not be obvious if you don’t know what

the port/address should look like (netstat or ss can

help)
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HW#1 Review – The Rest

• Comment your code!

• OSI reference model – was hoping for names not number

◦ Bits and voltages – physical layer (1?)

Not hardware layer

◦ Routing packets – network layer (3?)
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Homework #2 Notes – Connecting

• If connecting on same machine, can use localhost

if over network, must use IP address.

• Can find this various ways (ip addr on Linux)

• Be aware depending on how your network is set up

(firewalls, if behind NAT, etc) you might not be able to

connect to your test machine remotely
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Homework #2 Notes – Common
Issues/Debugging

• If browser confused, be sure you aren’t sending extra

zeros. strlen() is your friend

• If browser gets some data but then just spins waiting, be

sure your Content-length field is set with the proper size

Note it’s the size of file you are sending, does not include

header size.

• Debugging? strace, tcpdump

• If getting segfaults, try using gdb

9



HW#2 Hints – Reading Request

• First be sure you are getting the incoming header. Print

it or use strace to verify.

• Some web-browsers might send really big requests, be

sure getting it all

◦ Use big enough buffer? 4096 bytes? How big?

◦ How would a “proper” server do this?

malloc(), realloc() if not big enough?

Overkill for this homework. You can try this, but only if

you know what you are doing. Goal of this assignment
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is a simple server not perfect server.

◦ Just use a bigger buffer if necessary and error if you

get bigger, don’t waste time chasing pointers/segfaults
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HW#2 Hints – Parsing the Request

• Know how to search for a string and point to location

after it?

◦ Find a string and point to beginning of it.
char *pointer;

pointer=strstr(haystack ,needle );

◦ Look for "GET "

Actually points to beginning of GET. How to skip

ahead?

◦ pointer+=4 is one way. (pointer math, ugh)

◦ How to get to first space?
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◦ strtok(pointer," ");

Will split the string into chunks, put 0 at end.

◦ Also can do this manually;
pointer2=pointer;

while (* pointer) {

if (pointer ==’ ’) {

*pointer =0;

break;

}

pointer ++;

}

printf("%s\n",pointer2 );

• Be sure to strip off initial /, and if it’s just / return

index.html
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HW#2 Hints – Generating Response
Headers

• Print to stdout to verify what sending, also can use lynx

/ wget.

• Know how to construct a string on the fly?

◦ One way is to have empty string, than use strcpy()

first bit in. strcat() additional strings.

◦ Easier might be sprintf() If you want formatting

you can do things like
sprintf(temp_string ,"File size=%d\r\n",filesize );

strcat(out_string ,temp_string );
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◦ snprintf() might be a bit safer as you can specify

the max length of the string (to avoid overflowing)

◦ Try not to be too fancy with one gigantic sprintf call as

C can evaluate function parameters in arbitrary orders
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HW#2 Hints – General C annoyances

• When you use a char pointer to point into a string (as

when using strstr() or strtok() remember what you

have is a pointer, not a copy of the string you’re pointing

to. So if the buffer gets freed or re-used your pointer

may suddenly point to something different.
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HW#2 Hints – Getting Size of File

• Can read it in, and count.

• Or can use the stat (man stat.2)

need .2 (or man -a) as there’s a command line tool

called stat that comes ip first.
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HW#2 Hints – Sending File Contents

• Reading file into buffer then writing to socket

◦ I don’t recommend this as you have to dynamically

handle different file sizes

◦ If you do this, don’t use sprintf() with %s to print the

contents. Won’t work if 0 in file

• Reading/Writing in chunks

◦ open()/read()/write()/close

◦ fopen()/fread/fwrite/fclose (careful! Buffered!

And maybe need fdopen() to print to file descriptor).
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fd=open(filename ,O_RDONLY );

if (fd <0) fprintf(stderr ,"Error opening %s\n",filename );

while (1) {

result=read(fd ,buffer ,256);

if (result <=0) break;

write(network_fd ,buffer ,result );

}

Be sure to close afterward.
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HW#2 Notes – Knowing Request is Done

• How do you know you’ve read all the data from a socket

without blocking when you hit the end?

• Short answer: you can’t. TCP is a byte stream, you

don’t get to see packet boundaries.

◦ Ideally you’ll read things in and handle the values in

each read independently, even if they are incomplete

◦ Also your protocol can contain info that lets you know

how long things are (content-length), or have a signal

(like the empty newline in http after headers) that let
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you know

◦ You can set the fd to be non-blocking, but then you

have to busy-wait which is not optimal

◦ You can use poll() to be notified when a fd has data

but that’s complex

◦ The recv() call (unlike read() has some extra flags

that can help. On Linux can pass MSG DONTWAIT

which will not-block and just return an error if no data

is available
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Remote Connections
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Historical – telnet

• log in to remote system

• (tcp port 23)

• everything (including passwords) sent in plain text

• telnetd running on remote server
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Historical – rsh/rlogin

• remote shell, remote login

• (tcp port 514)

• Didn’t even need password, could configure to let you

run commands on remote machine

• Security based if you had same username on

both machines, assumption was getting root on

a UNIX machine and connected to Ethernet was

expensive/difficult
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SSH secure shell (background)

• Encrypts a connection between machines

• tcp port 22

• can login, run commands, tunnel tcp/ip, tunnel X11, file

transfer (scp, sftp)

• Large number of RFCs

• Version 1: 1995, originally freeware but became private

• Version 2: 2005, openBSD based on last free version

• For security reasons there’s a push to drop Version 1

• uses public-key cryptography
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SSH (implementation)

• transport layer: arranges initial key exchange, server

authentication, key re-exchange

• user authentication layer: can have password, or can set

up keys to allow passwordless, DSA or RSA key pairs

• connection layer: set up channels

• lots of encryption types supported, old ones being

obsoleted as found wanting

• Various ssh servers/clients. openssh. dropbear

• Diffie-Helman key exchange?
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◦ This is a public/private key thing

◦ Based on discrete logarithms?

◦ Wikipedia has a weird colored paint analogy
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ssh security

Brute forcing passwords is a major issue.

• Fail2ban

• Nonstandard port

• Port knocking

• Call asterisk for one-time pin?

• No-password (key only)

• Two-factor authentication (LCD keyfob)
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Alternatives to SSH?

• mosh
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Encryption Background

• Most crypto papers involve Alice and Bob (maybe Eve)

• Plaintext is transformed by some sort of function

parameterized by a “key” into Ciphertext.
This is then transmitted. The other side then decrypts

• What can be kept secret? Security by obscurity?

Kerckhoff’s principle: “All algorithms must be public;

only the keys are secret.”

• Combination lock analogy. Longer the key, the harder it

is to brute-force
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Encryption Types – Substitution

• Substitute each character for another with lookup table

• Decrypt by just doing the reverse

• Trivial Example: rot13 (Ceasar Cipher)

◦ A-N, B-O, C-P, etc.

◦ Weakness: English text easy to predict (’e’ most

common letter)

◦ What about double-rot13?
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Encryption Types – Transposition

• transposition cipher, keep letters same, re-arrange order
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Encryption Types – One Time Pad

• Unbreakable

• Downsides: must have enough bits, cannot reuse,

transporting.
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Secret Key Algorithm

• Key is secret

• How do you get it to the other person?

• How many keys do you need (ideally one per connection)
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Symmetric Key Algorithms

• Use same key for encryption and decryption

• Block ciphers, take block of data and encrypt it to same

size block (why in blocks?)

• P-box (permutation), S-box (substitution)

• shift/permute/xor

• *very* important that the key is picked randomly.
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Symmetric Key Implementations –
Historical

• DES – Data Encryption Standard

From 1976. 64 bit key (56-bits used). NSA had say

on key size. 19 stages based on Key. widely used until

broken. Competition to break various sizes.

• 3DES (running DES three times) [encrypt/decrypt/encrypt

with only two keys? Why? 112 bits seen as enough, also

if set keys to same then it’s same as single-DES (back

compat)]
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Symmetric Key Implementations – AES

• AES – Advanced Encryption Standard

◦ replaces DES

◦ NIST had a contest to find new standard

◦ Rijndael won

developed by two Belgian cryptographers Joan Daemen

and Vincent Rijmen

◦ NSA allows for classified data

Intel chips have AES instructions

Galois Field Theory (Gal-wah? interesting
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mathematician)
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AES Encryption

1. Key Expansion

2. AddRound on initial key (add/xor on round key)

3. 9/11/13 rounds (depending on key size)

(a) SubByte: non-linear substitution (w lookup table)

(b) ShiftRows: transposition/row shift

(c) MixColumns: mix columns (matrix multiply)

(d) AddRound (xor again)
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4. Final round: a,b,d again
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AES Attacks

• In theory take billions of years to brute force

• “Attack” means finding some way to decode key faster

than brute force

• Have been some but none really effective yet

• Side Channel Attacks are possible though
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AES Performance

• Pentium Pro 200MHz: 11 MBits/s

• Modern Intel/AMD with AES in hardware, multiple GB/s
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