
ECE 435 – Network Engineering
Lecture 5

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

31 January 2023

https://web.eece.maine.edu/~vweaver


Announcements

• HW#1 was Graded

• HW#2 posted, due Thursday.

This is possibly the most difficult assignment.

• Delaying due date to Friday as people having some issues

with it

1



HW#1 Review – Notes

• Handle unexpected early close, say control-C pressed

• Aside, why port 31337?

• Writing data

◦ With write syscall, need to set the size to send back.

◦ If you always send size of buffer even if not full, it

sends lots of useless zeros.

◦ Make sure you specify size to send. Provided code this

is hard-coded to 25 but you don’t want that with your

custom reply

2



◦ You can use strlen() to get size of string (don’t use

sizeof())

• Don’t ignore compiler warnings.

What if toupper() not found?

manpage. Need to include ctype.h

3



HW#1 Review – Specifications

• When you type ”bye” it would exit both sides.

(bye by itself? cr/lf? byet?

• Postel’s Law: strict what send, generous receive?

• Example of browser accepting herf instead of href? why

could this be bad?

4



HW#1 Review – Something Cool

• Command line arguments

◦ Don’t interfere with default behavior (unexpected)

◦ Is good to print expected command lines if there’s an

error, or have a help option

◦ Can you just document it in the README? Sadly

people don’t always read documentation?

• Printing port/address

◦ Biggest issue is forgetting to use htons() on the port

and htonl() on address

5



◦ This might not be obvious if you don’t know what

the port/address should look like (netstat or ss can

help)

6



HW#1 Review – The Rest

• Comment your code!

• OSI reference model – was hoping for names not number

◦ Bits and voltages – physical layer (1?)

Not hardware layer

◦ Routing packets – network layer (3?)

7



Homework #2 Notes – Connecting

• If connecting on same machine, can use localhost

if over network, must use IP address.

• Can find this various ways (ip addr on Linux)

• Be aware depending on how your network is set up

(firewalls, if behind NAT, etc) you might not be able to

connect to your test machine remotely

8



Homework #2 Notes – Common
Issues/Debugging

• If browser confused, be sure you aren’t sending extra

zeros. strlen() is your friend

• If browser gets some data but then just spins waiting, be

sure your Content-length field is set with the proper size

Note it’s the size of file you are sending, does not include

header size.

• Debugging? strace, tcpdump

• If getting segfaults, try using gdb

9



HW#2 Hints – Reading Request

• First be sure you are getting the incoming header. Print

it or use strace to verify.

• Some web-browsers might send really big requests, be

sure getting it all

◦ Use big enough buffer? 4096 bytes? How big?

◦ How would a “proper” server do this?

malloc(), realloc() if not big enough?

Overkill for this homework. You can try this, but only if

you know what you are doing. Goal of this assignment

10



is a simple server not perfect server.

◦ Just use a bigger buffer if necessary and error if you

get bigger, don’t waste time chasing pointers/segfaults

11



HW#2 Hints – Parsing the Request

• Know how to search for a string and point to location

after it?

◦ Find a string and point to beginning of it.
char *pointer;

pointer=strstr(haystack ,needle );

◦ Look for "GET "

Actually points to beginning of GET. How to skip

ahead?

◦ pointer+=4 is one way. (pointer math, ugh)

◦ How to get to first space?

12



◦ strtok(pointer," ");

Will split the string into chunks, put 0 at end.

◦ Also can do this manually;
pointer2=pointer;

while (* pointer) {

if (pointer ==’ ’) {

*pointer =0;

break;

}

pointer ++;

}

printf("%s\n",pointer2 );

• Be sure to strip off initial /, and if it’s just / return

index.html

13



HW#2 Hints – Generating Response
Headers

• Print to stdout to verify what sending, also can use lynx

/ wget.

• Know how to construct a string on the fly?

◦ One way is to have empty string, than use strcpy()

first bit in. strcat() additional strings.

◦ Easier might be sprintf() If you want formatting

you can do things like
sprintf(temp_string ,"File size=%d\r\n",filesize );

strcat(out_string ,temp_string );

14



◦ snprintf() might be a bit safer as you can specify

the max length of the string (to avoid overflowing)

◦ Try not to be too fancy with one gigantic sprintf call as

C can evaluate function parameters in arbitrary orders

15



HW#2 Hints – General C annoyances

• When you use a char pointer to point into a string (as

when using strstr() or strtok() remember what you

have is a pointer, not a copy of the string you’re pointing

to. So if the buffer gets freed or re-used your pointer

may suddenly point to something different.

16



HW#2 Hints – Getting Size of File

• Can read it in, and count.

• Or can use the stat (man stat.2)

need .2 (or man -a) as there’s a command line tool

called stat that comes ip first.

17



HW#2 Hints – Sending File Contents

• Reading file into buffer then writing to socket

◦ I don’t recommend this as you have to dynamically

handle different file sizes

◦ If you do this, don’t use sprintf() with %s to print the

contents. Won’t work if 0 in file

• Reading/Writing in chunks

◦ open()/read()/write()/close

◦ fopen()/fread/fwrite/fclose (careful! Buffered!

And maybe need fdopen() to print to file descriptor).

18



fd=open(filename ,O_RDONLY );

if (fd <0) fprintf(stderr ,"Error opening %s\n",filename );

while (1) {

result=read(fd ,buffer ,256);

if (result <=0) break;

write(network_fd ,buffer ,result );

}

Be sure to close afterward.

19



HW#2 Notes – Knowing Request is Done

• How do you know you’ve read all the data from a socket

without blocking when you hit the end?

• Short answer: you can’t. TCP is a byte stream, you

don’t get to see packet boundaries.

◦ Ideally you’ll read things in and handle the values in

each read independently, even if they are incomplete

◦ Also your protocol can contain info that lets you know

how long things are (content-length), or have a signal

(like the empty newline in http after headers) that let

20



you know

◦ You can set the fd to be non-blocking, but then you

have to busy-wait which is not optimal

◦ You can use poll() to be notified when a fd has data

but that’s complex

◦ The recv() call (unlike read() has some extra flags

that can help. On Linux can pass MSG DONTWAIT

which will not-block and just return an error if no data

is available

21



Remote Connections

22



Historical – telnet

• log in to remote system

• (tcp port 23)

• everything (including passwords) sent in plain text

• telnetd running on remote server

23



Historical – rsh/rlogin

• remote shell, remote login

• (tcp port 514)

• Didn’t even need password, could configure to let you

run commands on remote machine

• Security based if you had same username on

both machines, assumption was getting root on

a UNIX machine and connected to Ethernet was

expensive/difficult

24



SSH secure shell (background)

• Encrypts a connection between machines

• tcp port 22

• can login, run commands, tunnel tcp/ip, tunnel X11, file

transfer (scp, sftp)

• Large number of RFCs

• Version 1: 1995, originally freeware but became private

• Version 2: 2005, openBSD based on last free version

• For security reasons there’s a push to drop Version 1

• uses public-key cryptography

25



SSH (implementation)

• transport layer: arranges initial key exchange, server

authentication, key re-exchange

• user authentication layer: can have password, or can set

up keys to allow passwordless, DSA or RSA key pairs

• connection layer: set up channels

• lots of encryption types supported, old ones being

obsoleted as found wanting

• Various ssh servers/clients. openssh. dropbear

• Diffie-Helman key exchange?

26



◦ This is a public/private key thing

◦ Based on discrete logarithms?

◦ Wikipedia has a weird colored paint analogy

27



ssh security

Brute forcing passwords is a major issue.

• Fail2ban

• Nonstandard port

• Port knocking

• Call asterisk for one-time pin?

• No-password (key only)

• Two-factor authentication (LCD keyfob)

28



Alternatives to SSH?

• mosh

29



Encryption Background

• Most crypto papers involve Alice and Bob (maybe Eve)

• Plaintext is transformed by some sort of function

parameterized by a “key” into Ciphertext.
This is then transmitted. The other side then decrypts

• What can be kept secret? Security by obscurity?

Kerckhoff’s principle: “All algorithms must be public;

only the keys are secret.”

• Combination lock analogy. Longer the key, the harder it

is to brute-force

30



Encryption Types – Substitution

• Substitute each character for another with lookup table

• Decrypt by just doing the reverse

• Trivial Example: rot13 (Ceasar Cipher)

◦ A-N, B-O, C-P, etc.

◦ Weakness: English text easy to predict (’e’ most

common letter)

◦ What about double-rot13?

31



Encryption Types – Transposition

• transposition cipher, keep letters same, re-arrange order

32



Encryption Types – One Time Pad

• Unbreakable

• Downsides: must have enough bits, cannot reuse,

transporting.

33



Secret Key Algorithm

• Key is secret

• How do you get it to the other person?

• How many keys do you need (ideally one per connection)

34



Symmetric Key Algorithms

• Use same key for encryption and decryption

• Block ciphers, take block of data and encrypt it to same

size block (why in blocks?)

• P-box (permutation), S-box (substitution)

• shift/permute/xor

• *very* important that the key is picked randomly.

35



Symmetric Key Implementations –
Historical

• DES – Data Encryption Standard

From 1976. 64 bit key (56-bits used). NSA had say

on key size. 19 stages based on Key. widely used until

broken. Competition to break various sizes.

• 3DES (running DES three times) [encrypt/decrypt/encrypt

with only two keys? Why? 112 bits seen as enough, also

if set keys to same then it’s same as single-DES (back

compat)]

36



Symmetric Key Implementations – AES

• AES – Advanced Encryption Standard

◦ replaces DES

◦ NIST had a contest to find new standard

◦ Rijndael won

developed by two Belgian cryptographers Joan Daemen

and Vincent Rijmen

◦ NSA allows for classified data

Intel chips have AES instructions

Galois Field Theory (Gal-wah? interesting

37



mathematician)

38



AES Encryption

1. Key Expansion

2. AddRound on initial key (add/xor on round key)

3. 9/11/13 rounds (depending on key size)

(a) SubByte: non-linear substitution (w lookup table)

(b) ShiftRows: transposition/row shift

(c) MixColumns: mix columns (matrix multiply)

(d) AddRound (xor again)

39



4. Final round: a,b,d again

40



AES Attacks

• In theory take billions of years to brute force

• “Attack” means finding some way to decode key faster

than brute force

• Have been some but none really effective yet

• Side Channel Attacks are possible though

41



AES Performance

• Pentium Pro 200MHz: 11 MBits/s

• Modern Intel/AMD with AES in hardware, multiple GB/s

42


